Heavy-Duty (HD) Diesel Engines Roadmap

SAE-NA 2015

Gilles Hardy
Dipl.-Ing. (TU)

Arbon, Switzerland
16 September 2015
1. FPT Industrial
2. Last decade HD development: ATS
3. Thermal Efficiency Improvement
4. 3D CFD Combustion Analysis
5. Conclusions
FPT Industrial

CNH Industrial: Group Structure

Agricultural Equipment

Construction Equipment

Commercial Vehicles

Powertrain

Financial Services
FPT Industrial

Location

FPT Motorenforschung AG
Schlossgasse 2
CH-9320 Arbon

FPT Industrial
Via Puglia 15
IT-10156 Turin
FPT Industrial
CNH Industrial: Product Portfolio
FPT Industrial
Brands and timeline

1929 > 1975: “Fiat Veicoli Industriali”, later incorporated into the newly-born **Iveco**

2004: creation of **Iveco Motors** dedicated to industrial (both on and off highway), marine and power generation applications

2005: creation of FPT, Fiat Powertrain Technologies, unified all of the powertrain activities within the Fiat Group

2010: Fiat demerged its agricultural and construction equipment business (CNH), trucks and commercial vehicles business (Iveco) and the related powertrain activities (FPT Industrial) to a newly established company, **Fiat Industrial S.p.A**

2013: CNH Global N.V. and **Fiat Industrial S.p.A.** were merged into **CNH Industrial N.V.**
FPT Industrial
Innovation in industrial engines

1980 - First turbocharged Heavy Duty engine
1985 - First Direct Injection engine on LCVs
1989 - First engine with Electronic Diesel Control
1992 - First Common Rail engine on LCVs
1999 - Introduction of SCR technology for Euro IV - V
2002 - HI-eSCR on IVECO Euro VI heavy range
2005 - First EGR on Diesel engines for LCVs
2009 - First CNG engine on LCVs
2012 - Launch of MultiJet technology
2012 - Launch of MultiAir Technology
FPT Industrial
Example H-D Truck mission

Cruise 100 kW
FPT Industrial
Example Farm Tractor mission

Engine Load [%]

Engine RPM [1/min]

% Lastkollektiv

10 SAE-NA 2015

16 September 2015
FPT Industrial
Example Combine Harvester mission
FPT Industrial
Example Excavator mission
FPT Industrial
Example Marine Speed Yacht mission

![Graph showing engine load percentage vs. engine RPM](image)
Outline

1. FPT Industrial
2. Last decade HD development: ATS
3. Thermal Efficiency Improvement
4. 3D CFD Combustion Analysis
5. Conclusions
Emission Regulation in Europe

Timeline

Not only stricter limits but more demanding test procedures (dynamic) and in particular ISC-PEMS (real time driving) has driven the development and technology selection.

EU3:
NOx = 5.0 g/kWh
PM = 0.1 g/kWh

EU6:
NOx = 0.4 g/kWh
PM = 0.01 g/kWh
Technologies Development

Technologies vs regulation

Year	Naturally aspirated	Turbo	Turbo + IC	VTG, WG, IC, 2-stage TC	FIE: Distributor, in-line pump	UI	Common Rail	Mechanical control	EDC, map-based	model-based	Non-EGR	EGR	No ATS	Oxicat / DPF	SCR / DPF	IDI on small high speed diesel	DI on small high speed diesel	
1970																		
1980																		
1990																		
2000																		
2010																		
2020																		

<table>
<thead>
<tr>
<th>Year</th>
<th>Power density hp/liter</th>
<th>Oil drain interval km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>20</td>
<td>3'000</td>
</tr>
<tr>
<td>1980</td>
<td>26</td>
<td>20'000</td>
</tr>
<tr>
<td>1990</td>
<td>37</td>
<td>50'000</td>
</tr>
<tr>
<td>2000</td>
<td>43</td>
<td>150'000</td>
</tr>
<tr>
<td>2010</td>
<td>45-50</td>
<td>150'000</td>
</tr>
<tr>
<td>2020</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

16 September 2015 | SAE-NA 2015 | 16
Euro VI Technology

Moderate EGR approach
Euro VI Technology
HI-eSCR approach
Euro VI Technology
HI-eSCR approach for On-Road Euro VI

2NO₂ + 4NH₃ + O₂ → 3N₂ + 6H₂O
Euro VI Technology
HI-eSCR approach (no PDF) for Off-Road Tier 4b

Hydrolysis Catalyst

\[
\text{CO(NH}_2\text{)}_2 + \text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{CO}_2
\]

Exhaust gases

SCR Catalyst

\[
8\text{NH}_3 + 6\text{NO}_2 \rightarrow 7\text{N}_2 + 12\text{H}_2\text{O}
\]

\[
4\text{NH}_3 + 4\text{NO} + \text{O}_2 \rightarrow 4\text{N}_2 + 6\text{H}_2\text{O}
\]

\[
2\text{NH}_3 + \text{NO} + \text{NO}_2 \rightarrow 2\text{N}_2 + 3\text{H}_2\text{O}
\]

Oxidation Catalyst

2NO + O\text{2} \rightarrow 2NO\text{2}

2CO + O\text{2} \rightarrow 2CO\text{2}

4HC + 5O\text{2} \rightarrow 4CO\text{2} + 2H\text{2}O

4NH\text{2} + 3O\text{2} \rightarrow 2N\text{2} + 6H\text{2}O
Euro VI Technology
In use emissions summary

- On-road emissions of Euro VI heavy duty trucks (fully loaded) are about four times lower than a single passenger car in g/(kmT).

<table>
<thead>
<tr>
<th>EU6</th>
<th>NOx g/kWh</th>
<th>Speed km/h</th>
<th>Power kW</th>
<th>NOx g/km</th>
<th>NOx g/km.T</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD Truck 40T</td>
<td>0.4</td>
<td>80</td>
<td>100</td>
<td>0.5</td>
<td>0.0125</td>
</tr>
<tr>
<td>Passenger Car 1.6T</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td>6.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- Criteria Pollutants in the exhaust are within max workplace concentration limits (ppm).
- The PEMS requirements will guarantee that emissions remain within the limits over the useful life of the vehicle.

Euro VI = near zero emission truck
Euro VI Technology
Fuel Consumption Development

AVERAGE FUEL CONSUMPTION (GROSS VEHICLE WEIGHT 38/40 T)

Source: lastauto omnibus 4/2014

Original test track
Slightly Modified test track
New test track

Euro 6
Outline

1. FPT Industrial
2. Last decade HD development: ATS
3. Thermal Efficiency Improvement
4. 3D CFD Combustion Analysis
5. Conclusions
Technology Drivers

Paradigm change

IN RECENT YEARS

- Innovation driven by emissions legislation NO\textsubscript{x} / PM
- Maintaining or improving fuel consumption / CO\textsubscript{2} and operating cost
- Improving cost, reliability and weight

PARADIGM CHANGE

- Innovation driven by fuel consumption / CO\textsubscript{2} and operating cost
- Maintaining low NO\textsubscript{x} / PM emission level
- Improving total cost of ownership, reliability and weight
Thermal Efficiency (best point)

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1893</td>
<td>FIRST DIESEL ENGINE</td>
</tr>
<tr>
<td>1980</td>
<td>FIRST TURBOCHARGED HEAVY DUTY ENGINE</td>
</tr>
<tr>
<td>1999</td>
<td>ADVANCED AIR-HANDLING SYSTEMS</td>
</tr>
<tr>
<td>2013</td>
<td>FPT INDUSTRIAL HI-eSCR ENGINES</td>
</tr>
<tr>
<td>2020</td>
<td>INTEGRATED ENERGY MANAGEMENT</td>
</tr>
</tbody>
</table>

bsfc

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1893</td>
<td>26%</td>
</tr>
<tr>
<td>1980</td>
<td>39%</td>
</tr>
<tr>
<td>1999</td>
<td>42%</td>
</tr>
<tr>
<td>2013</td>
<td>44%</td>
</tr>
<tr>
<td>2020</td>
<td>>50% (?)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>bsfc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1893</td>
<td>320 g/kWh</td>
</tr>
<tr>
<td>1980</td>
<td>215 g/kWh</td>
</tr>
<tr>
<td>1999</td>
<td>200 g/kWh</td>
</tr>
<tr>
<td>2013</td>
<td>189 g/kWh</td>
</tr>
<tr>
<td>2020</td>
<td>168 g/kWh</td>
</tr>
</tbody>
</table>

16 September 2015
Efficiency Segregation

Definition

\[
\eta_{Eng} = \frac{P_e}{Q_{fuel}} = \frac{P_e}{P_i} \cdot \left(1 + \frac{P_{iLP}}{P_{iHP}}\right) \cdot \frac{P_{iHP}}{\dot{Q}_{fuel} - \dot{Q}_{wall}} \cdot \frac{\dot{Q}_{fuel}}{\eta_{Comb}} - \frac{\dot{Q}_{wall}}{\eta_{Wall}}
\]

\(\eta_{Mech}\) ... Mechanical Efficiency
\(\eta_{Comb}\) ... Combustion Efficiency
\(\eta_{Wall}\) ... Wall Heat Loss Efficiency
\(\eta_{GasEx}\) ... Gas-Exchange Work Efficiency

\(P_e\) Brake Power (at flywheel)
\(P_i\) Indicated Power (at pistons)
\(Q_{Fuel}\) Fuel Energy
\(Q_{Wall}\) Total Wall Heat Flux
\(P_{iHP}\) Ind.Power during high pr. Cycle
\(P_{iLP}\) Ind.Power during low pr. cycle

Fuel Consumption for 100 % Efficiency (Hu = 42.8 MJ/kg): \(\eta(100\%) \approx 84.1\text{ g/kWh}\)
Brake Thermal Efficiency
What are the Limitations?

<table>
<thead>
<tr>
<th>Approach</th>
<th>Combustion Efficiency [%]</th>
<th>Mechanical Efficiency [%]</th>
<th>Wall Heat Loss Efficiency [%]</th>
<th>Gas Exchange Efficiency [%]</th>
<th>Brake Thermal Efficiency [%]</th>
<th>BSFC [g/kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURO VI (best BSFC)</td>
<td>55.7 %</td>
<td>93.5 %</td>
<td>85.5 %</td>
<td>99.3 %</td>
<td>44.2 %</td>
<td>190.2</td>
</tr>
<tr>
<td>Vision 2020</td>
<td>60.0 %</td>
<td>95.0 %</td>
<td>87.0 %</td>
<td>101.0 %</td>
<td>50.0 %</td>
<td>167.9</td>
</tr>
<tr>
<td>Delta (EU VI – Vision 2020)</td>
<td>4.3 %</td>
<td>1.5 %</td>
<td>1.5 %</td>
<td>1.7 %</td>
<td>5.8 %</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Limitations

- Achievable with shorter combustion duration
- Seems max. achievable, little effect of further improvements
- No feasible solution yet, further effort required. Any improvement on combustion worsens Wall HT
- Small further improvement (intake ports), more map optimisation

Highest potential for further thermal efficiency improvement:
Reach higher combustion and wall heat losses efficiencies simultaneously
Brake Thermal Efficiency
How to improve it?

➢ Compression Ratio
➢ Combustion Duration
➢ EGR – AdBlue
➢ Two-Stage T/C
Compression Ratio
Mixed / Sabathé / Seilinger Cycle

\[\eta_{\text{Seiliger}} = 1 - \frac{1}{\varepsilon^{\kappa-1}} \cdot \frac{\psi^\kappa \xi - 1}{\xi - 1 + \kappa \xi (\psi - 1)} \]

\[\xi = \frac{p_3}{p_2} = \frac{T_3}{T_2}; \quad \psi = \frac{V_4}{V_3} = \frac{T_4}{T_3} \]

Friction loss \(\propto \) PCP
(Peak Cylinder Pressure)
Compression Ratio

Peak Cylinder Pressure

Cylinder Pressure Trend FPT HD - On Road Engine

- Euro V
- Euro VI
- Euro III
- Injection retarded!!

PCP [bar]

100 120 140 160 180 200 220 240 260
Brake Thermal Efficiency

How to improve it?

- Compression Ratio
- **Combustion Duration**
- EGR – AdBlue
- Two-Stage T/C
Combustion duration
CR and Combustion duration effect on BSFC

 Turbo Charger: Virtual (1-Stage)
 Compressor Efficiency: 74%
 Turbine Efficiency: 70%

 B.S.F.C. [g/kWh]

 Speed: 1'200 rpm
 Load: 100 kW
 Air excess ratio: 2.20
 Optimised Injection Timing

 Compression Ratio [\textstyle \frac{1}{C}]

 Combustion Duration [%] (100% about EURO V)

 -2 g/kWh
 -3 g/kWh
Combustion duration
Injector Nozzle Permeability

Cruise Load

<table>
<thead>
<tr>
<th>Combustion Duration [°CA]</th>
<th>Std Holes</th>
<th>Large Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q10% [-2.7° aTDC]</td>
<td>-2.7</td>
<td>-2.7</td>
</tr>
<tr>
<td>Q 10%-90% [33.4° aTDC]</td>
<td>33.4</td>
<td>36.6</td>
</tr>
<tr>
<td>Q50% [4.3° aTDC]</td>
<td>4.3</td>
<td>3.9</td>
</tr>
</tbody>
</table>

>> BSFC improvement 0.2% !!! (negligible)

Combustion duration can be misleading !!
Combustion duration
Injector Nozzle Permeability

Potential gain to run with larger holes but at the expense of Soot!!

FIE future development: Variable Nozzle Permeability
Brake Thermal Efficiency
How to improve it?

- Compression Ratio
- Combustion Duration
- EGR – AdBlue
- Two-Stage T/C
EGR Strategy
Total Fuel + Adblue Cost

BSNOx as Function of EGR Rate and Air Excess Ratio

- Lambda:=1.2
- Lambda:=1.4
- Lambda:=1.6
- Lambda:=1.8
- Lambda:=2
- Lambda:=2.5

Relative BSNOx [%]

EGR Rate [%]

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
EGR Strategy
Total Fuel + Adblue Cost

A75 Load

Increased Heat Rejection (leading to aerodynamic loss)

EGR rate [%]

+25%
Brake Thermal Efficiency
How to improve it?

- Compression Ratio
- Combustion Duration
- EGR – AdBlue
- **Two-Stage T/C**
Two-Stage T/C

Layout

- Improved BSFC by downsizing: about 2-3 %
- High Power density
- Requires higher PCP (Friction increase)
- Higher Cost

C13 VTG compared to C10 2-stage (2 x FTG)

![Diagram showing C13 VTG compared to C10 2-stage (2 x FTG)](image)

<table>
<thead>
<tr>
<th>B.S.F.C. [g/kWh]</th>
<th>Relative BMEP [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

CURSOR - 2-stage Turbo Charging (1'400 rpm)
Two-Stage T/C Efficiency

Comparison 1- & 2-stage Turbo Charging

Compressor Efficiency = 72%
Turbine Efficiency = 72%
HP & LP CAC Efficiency 90%
Exhaust gas temp. = 650°C
Typical pr. losses at 1200rpm

Current HD On-road

Downsizing
Application of Technologies
FPT Heavy-Duty FEP demonstrator

- Higher Compression Ratio
- Optimised Bowl Shape & Swirl
- L-EGR
- Thermal Management
- Low Friction Bearings
- Turbo Charger upgrade
Combustion

FPT Heavy-Duty

\[\eta_{\text{Comb}} = \frac{P_e}{\dot{Q}_{\text{fuel}}} = \frac{P_e}{P_i} \left(1 + \frac{P_{\text{ILP}}}{P_{\text{IHP}}} \right) \frac{P_{\text{IHP}}}{\eta_{\text{GasEx}}} \frac{\dot{Q}_{\text{fuel}} - \dot{Q}_{\text{wall}}}{\dot{Q}_{\text{fuel}}} \frac{\dot{Q}_{\text{fuel}} - \dot{Q}_{\text{wall}}}{\eta_{\text{Combustion}}} \frac{\dot{Q}_{\text{fuel}}}{\eta_{\text{Wall}}} \]

\begin{align*}
\text{bsfc } \eta \text{ Comb} & : 55.7\% \\
\text{Map Area } > \eta 57\%: 60\% \\
\text{bsfc } \eta \text{ Comb} & : 58.7\% \\
\text{Map Area } > \eta 57\%: 90\%
\end{align*}

+3.0% abs. \(\eta \) Combustion
Wall Heat Loss

\[\eta_{\text{Eng}} = \frac{P_e}{\dot{Q}_{\text{fuel}}} = \frac{P_e}{P_i} \left(1 + \frac{P_{\text{ILP}}}{P_{i\text{HP}}} \right) \cdot \frac{\dot{Q}_{\text{fuel}}}{\epsilon_{\text{GasEx}}} \cdot \frac{P_{i\text{HP}}}{\epsilon_{\text{Combustion}}} \cdot \frac{\dot{Q}_{\text{fuel}} - \dot{Q}_{\text{wall}}}{\epsilon_{\text{Wall}}} \]

C11 EU6

bsfc \(\eta \) Wall HT : 85.5%
Map Area > \(\eta \) 84%: 45%

C11 FEP

bsfc \(\eta \) Wall HT : 84.4%
Map Area > \(\eta \) 84%: 30%

-1.1% abs. \(\eta \) Wall Heat Loss
Burnt Duration: Q 90%-10% [°CA]
FPT Heavy-Duty

C11 EU6

bsfc Q 90%-10% : 33.4°
pRail: 900 bar
EGR: 0%

C11 FEP

bsfc Q 90%-10% : 25.8°
pRail: 1300 bar
EGR: 4%

16 September 2015
Combustion Efficiency

What's next?

Turbo Compound
+1% at Full Load

WHR: Rankine Cycle
+2-3% at Part Load

Mission Optimisation
+1% in Mission Load

Hybridisation
+?% depends on power and battery capacity
1. FPT Industrial
2. Last decade HD development: ATS
3. Thermal Efficiency improvement
4. 3D CFD Combustion Analysis
5. Conclusions
3D CFD Combustion Analysis
Tools to optimise Combustion efficiency

- 3D CFD Combustion to analyse and improve η Combustion
- Sector calculation from IVC $>$ EVO as cost effective
- Current Combustion model (like ECFM) and Heat Transfer models not very predictive for High Load HD Diesel
- Started in-house project to develop a combustion model being validated with HD-like condition flame structure and Engine High Load conditions
CFD Combustion Analysis

NexGenComb

 Constant Volume Bomb Experiments at TU/e (EHPC)
- Flame Structure (OH, CH2O, CO)
- Flame wall interaction with Heat Flux measurements
- Ambient Density, Nozzle orifice similar to HD Diesel engine at SOI

Engine Experiments
Heat Release and Pollutants
- HD Cursor11 EU6 and High PCP
- LD F1C EU6
- LD F1C PCCI

Validation of flame structure and wall heat flux for HD diesel conditions

Next Generation Combustion Model into OpenFoam
1) Model based on pre-tabulated complex chemistry: TABKIN
2) HRR, NOx and CO: trends and absolute values (no or very limited tuning)
3) Multi-fuel capabilities (Dual Fuel Diesel-Gas engine)

Refs:
Thiesel 2014
SAE 2015-01-0375

16 September 2015
SAE-NA 2015
CFD Validation of Flame Structure (Spray A)
FPT Heavy-Duty

Figure 1: Comparison of flame structures at 0.6, 0.7, 0.8 ms after start of injection.
CFD Validation of CR sweep for Cruise load point

FPT Heavy-Duty

CR16.50 (Low swirl)

CR25.50 (Low swirl)
Outline

1. FPT Industrial
2. Last decade HD development: ATS
3. Thermal Efficiency improvement
4. 3D CFD Combustion Analysis
5. Conclusions
Conclusions
FPT Heavy-Duty

✓ 50% brake thermal efficiency is probably achievable without add ons but wall heat loss reduction is a big challenge.
✓ Add on such as WHR, Turbo Compound, Electrification could bring thermal efficiency up to 52-53% but cost and maintenance is an issue.
Acknowledgments

- Politecnico di Milano, prof. A. Onorati and his group
- TU Eindhoven, prof. B. Somers and his group
- FPT Motorenforschung, dr. H. Fessler & Colleagues
… any questions?

Thank you very much for your attention!

Gilles Hardy
Dipl.-Ing. (TU)
Air Handling
T: +41 (0)71 4477285
E: gilles.hardy@cnhind.com

FPT Motorenforschung AG
Schlossgasse 2
CH-9320 Arbon
www.cnhind.com
Backup