THERMAL EFFICIENCY ENHANCEMENT OF GASOLINE ENGINE

Kenichiro Ikeya Honda R&D Co., Ltd. Japan

3. How to Achieve Brake Thermal Efficiency 45% <sae_paper 2015-01-1263>

4. Conclusion

Intended Direction of This Research

Torque (Nm)

Intended Direction of This Research

Torque (Nm)

Intended Direction of This Research

Torque (Nm)

How to Achieve Target Thermal Efficiency

- Compression ratio (CR) : 17 or over
- Ignition timing : MBT
- EGR rate : 30% or more
- Boost pressure : 200 kPa or more

*FMEP: Mass-production L4 engine *Ignition timing: MBT

Test System : Single-cylinder Engine

Engine specifications		
Engine type	DOHC 4-valve Single-cylinder	
Compression Ratio (CR)	13.5 20.0	$(III) = \begin{bmatrix} 12 \\ 10 \\ 8 \\ 4 \\ 2 \\ 0 \\ 270 \\ 360 \\ 450 \\ 540 \\ 630 \\ 720 \\ CA (deg) \end{bmatrix}$
Inlet Valve Close @1mm	40,54,64,74,84° ABDC	
Bore, Stroke (mm)	Ф81, 96.6 121.5 162	
S/B	1.2 1.5 2.0	Inlet Valve Open@1mm
Displacement Volume (cm ³)	499 626 835	-10deg ATDC (Fixed)
Intake Port	Tumble Port	
Air Supply	Super-charger	
EGR Supply	LPL - EGR	
Fuel Supply	PI / DI	

Test System : Single-cylinder Engine

Engine specifications

Engine type	DOHC 4-valve Single-cylinder
Compression Ratio (CR)	13.5 20.0
Inlet Valve Close @1mm	40,54,64,74,84° ABDC
Bore, Stroke (mm)	Ф81, 96.6 121.5 162
S/B	1.2 1.5 2.0
Displacement Volume (cm ³)	499 626 835
Intake Port	Tumble Port
Air Supply	Super-charger
EGR Supply	LPL - EGR
Fuel Supply	PI / DI

Stroke was changed by • Crankshaft • Connecting Rod • Cylinder Sleeve

Countermeasure of High Compression Ratio 1 Stroke-Bore (S/B) ratio

Influence of S/B to thermal efficiency

Countermeasure of High Compression Ratio 2 Effective Compression Ratio (Late Intake Valve Close)

Countermeasure for High EGR Ratio 1 Flame Kernel Formation

Space Near Spark Plug Gap

 V1 > 2% of Combustion Chamber Volume at TDC

2000 rpm IMEP 810 kPa

V: Combustion chamber volume at TDC V1: Volume of virtual sphere centering on Ignition-plug electrode with inflating to touch surface of piston or cylinder head

Countermeasure for High EGR Ratio 1 Flame Kernel Formation

co-variation of

EGR rate of

(%)

5%

MEP

5%

High Energy Ignition

- Ignition Energy Extends EGR Limit
- Ignition Energy Set to 450mJ
 - Wear of Spark Plug
 - Power comsumption

2000 rpm, IMEP 520 kPa, EGR Rate=20% ε = 9.5

Countermeasure for High EGR Rate 2 High Turbulent Intensity - 3D Simulation Result

Countermeasure for High EGR Rate 2 High Turbulent Intensity - 3D Simulation Result

Countermeasure for High EGR Rate 2 High Turbulent Intensity - 3D Simulation Result

Brake Thermal Efficiency Achieved : Single Cylinder Engine

Engine specifications

Engine type	DOHC 4-valve
Bore, Stroke (mm)	Ф81 , 162
S/B	1.5
Displacement volume (cm ³)	626
Compression ratio	17.0
Effective compression ratio	12.4
Intake port	Tumble port
Piston shape	Bowl shape
Ignition energy	450 mJ
Air supply	Super-charger
Fuel supply	DI

*Thermal efficiency calculation FMEP, PMEP

: Equivalent to L4 engine

Engine System Design

Engine Height Setting

A/F Ratio Varies

A/F Ratio Varies / Countermeasure

Examination of Boosting System Specifications

Examination of Boosting System Specifications

3. How to Achieve Brake Thermal Efficiency 45% <sae_paper 2015-01-1263>

4. Conclusion

Conclusion

Specifications of 45% Brake Thermal Efficiency on Single Cylinder Engine Higher Compression Ratio : Compression Ratio 17

- Late Intake Valve Close--- Effective Compression Ratio 12.4
- Long Stroke --- Stroke-Bore Ratio 1.5
- Higher EGR Rate : EGR Rate 35%
 - Ensuring Space around Ignition Point --- 2% Volume of TDC's Combustion Chamber Volume
 - High Energy Ignition --- 450mJ
 - High Turbulent Kinetic Energy --- High Tumble Ratio Port, Keeping Tumble Flow Shape of Combustion Chamber

Multi Engine Application

Increased Engine Height Due to High Stroke-Bore Ratio

- 0 Cylinder Offset to Restrict Engine Height Increase to 10mm
- Countermeasure for A/F varies caused by Late Intake Valve Close
 - Firing Order Arranged Intake Manifold

High Efficiency and Wide range Boosting System is Needed

• Combined T/C

Conclusion

Specifications of 45% Brake Thermal Efficiency on Single Cylinder Engine Higher Compression Ratio : Compression Ratio 17

- Late Intake Valve Close--- Effective Compression Ratio 12.4
- Long Stroke --- Stroke-Bore Ratio 1.5
- Higher EGR Rate : EGR Rate 35%
 - Ensuring Space around Ignition Point --- 2% Volume of TDC's Combustion Chamber Volume
 - High Energy Ignition --- 450mJ
 - High Turbulent Kinetic Energy --- High Tumble Ratio Port, Keeping Tumble Flow Shape of Combustion Chamber

Multi Engine Application

Increased Engine Height Due to High Stroke-Bore Ratio

- 0 Cylinder Offset to Restrict Engine Height Increase to 10mm
- Countermeasure for A/F varies caused by Late Intake Valve Close
 - Firing Order Arranged Intake Manifold

High Efficiency and Wide range Boosting System is Needed

• Combined T/C

Thank you for your kind attention.

Honda R&D Co., Ltd.