X-Ray Diagnostics for Fuel Injection and Sprays

Christopher Powell
Daniel Duke, Nicholas Sovis, Andrew Swantek (Energy Systems)
Alan Kastengren (Advanced Photon Source)

DOE Vehicle Technologies Program
Team Leaders Gurpreet Singh, Leo Breton

Thanks to the Organizing Committee
“Still, let’s do an x-ray just to be sure.”
Sprays are Critical for Efficient Engines

- Fuel and air mixing must be carefully controlled
- Fuel sprays have been an area of active research for 30+ years.
 - Measurements rely primarily on visible light
 - Imaging, scattering, fluorescence, spectroscopy
- These techniques have limited ability to quantify the fuel density
 - Large number of droplets leads to multiple scattering
 - Limits penetration of visible light
 - Obscures fuel distribution
 - Limits the data available for engine design, computer simulations
X-Ray Diagnostics Reveal the Fuel Distribution

Mie Scattering Image Locomotive Injector

Image courtesy of Essam El-Hannouny, Argonne

Diesel Spray X-Ray Radiography

Fuel Injector

Visible Light

Scattering

Absorption

X-Rays

Axial Position (mm)

Mass/Area (µg/mm²)
The Idea to Use X-Rays for Sprays Was *Not* Invented at Argonne

G. Zimmerman & V. Aust, Fraunhofer EMI, 1997

K. Kuo, K. C. Hsieh, and J. M. Char
Penn State, 1990
The Advanced Photon Source at Argonne National Laboratory

- Spray studies require fast time resolution, high spatial resolution – FLUX!
- 10^6 times more x-rays than a benchtop source.
- Similar sources worldwide
- Laboratory dedicated to spray research
X-Ray Radiography

\[\frac{I}{I_0} = \exp\left(-\mu_M M\right) \]

- **Weak signal, maximum absorption \(\sim 2\% \)**
- For best S/N, need to concentrate flux in small area
- Must raster scan to build 2D information

\(I_0 \) Incident x-ray flux
\(I \) Transmitted x-ray flux
\(\mu_M \) Fuel absorption constant
\(M \) Integrated Mass/Area
Radiography Gives Quantitative Measurement of the Fuel

- Ability to penetrate optically dense sprays
- Line-of-sight, ensemble-averaged, time-dependent fuel distribution
- 5 \(\mu m \) spatial resolution, 1 \(\mu s \) time resolution
- High pressure, but room temperature
- Quantitative data for development and validation of spray models
Spray Tomography

90 Lines of Sight allow density (kg/m3) to be determined precisely
3D Reconstruction of Gasoline Sprays

- Many lines of sight, mathematical reconstruction
- Shows average, time-resolved density at several “slices” through the spray
- Fine space, time, density resolution (25 μm, 5 μs, 15%)
- Provides very stringent test of models

2 mm 5 mm 10 mm
Radiography Quantifies Shot-to-Shot Variability

- Can quantify variability in fuel distribution in units of mass
 - *Spray variability may contribute to combustion variability*

- LES Spray models predict shot-to-shot variation
 - These data can be used to validate those predictions

\[P_{\text{inj}} = 500 \text{ bar} \]
\[P_{\text{amb}} = 20 \text{ bar} \]
\[\phi = 180 \mu \text{m} \]
Principle of X-Ray Phase-Contrast Imaging

- Diffraction at density gradients enhances the contrast in an image
- High speed visualization
- Resolution $\sim 1 \, \mu m$, 10 ps
- Image brightness is no longer directly related to density of sample

Diffraction at density gradients enhances the contrast in an image. High speed visualization. Resolution $\sim 1 \, \mu m$, 10 ps. Image brightness is no longer directly related to density of sample.
High Speed X-Ray Imaging of Needle Valve Motion

- Off-axis motion is undesirable
- Affects flow inside, outside the injector
- Useful for defining time-resolved simulation geometry
Needle Eccentricity Affects Nozzle Flow

- Simulations using measured, eccentric needle motion
- In 3 hole nozzle, vortex flow develops in sac near SOI and EOI
- This decreases fuel flow to one of the holes.

Battistoni & Som, SAE Congress 2014
• Cavitation in the nozzle during the flow
• Bubbles pulled into the sac after injection
Cavitation is an Important Problem in Injectors

- Cavitation: fuel can vaporize in low pressure regions of the flow
 - Causes nozzle erosion
 - Increases with injection pressure
- Not well understood
- Difficult to measure
 - Multiple scattering
 - Optically opaque

Giannadakis et al.
Radiography Measures Density of Cavitating Flows

- No interference from multiple scattering
- Allows for more stringent validation of flow simulations
- Radiography cannot distinguish between cavitation and dissolved gas emerging from solution
 - Requires working with degassed fuels
 - Not a good model for real fuel systems
X-Ray Fluorescence Can Track Chemical Elements

- Visible light fluorescence excites vibrational states in molecules
- X-ray fluorescence excites inner core electronic states
- Not affected by bonding, T, visible light emission, soot, phase, etc
- Characteristic wavelength (energy) for each element
Studies of Jet Mixing Using X-Ray Fluorescence

- Two impinging liquid jets
- One jet doped with copper, other with zinc
- Probe the flow with x-ray beam
- Track the concentrations of these elements as the jets mix
Studies of Jet Mixing Using X-Ray Fluorescence

- Elemental tracers track the impinging jets
- Jets collide, partially mix
- Streams cross, stay on opposite side of merged jet
- Powerful tool to understand mixing processes
First Measurements of Cavitation and Dissolved Gas

- X-ray fluorescence
 - Bromine tracer dissolved in the fuel
 - Saturate fuel with krypton gas
 - Br and Kr emit x-rays of different wavelengths

- Under non-cavitating conditions
 - Uniform distributions of Br and Kr

- Under cavitating conditions
 - Regions of low bromine concentration indicate gas and/or vapor
 - If these regions contain krypton, it indicates dissolved gas coming out of solution
 - First measurement that can resolve dissolved gas and cavitation

Duke et al, SAE 2015-01-0198
Near-Nozzle Droplet Sizing is Difficult with Visible Light

- Droplet sizing is critical for understanding spray breakup
- Little is known in the near-nozzle region
- Optical droplet sizing breaks down because of multiple scattering
- X-rays can penetrate this region of the jet, multiple scattering is negligible

Labs and Parker
Atomization and Sprays
v. 16, 2006
Small-Angle X-Ray Scattering Measures Surface Area of a Sample

- Measure number of x-rays scattered as a function of angle
- Absolute magnitude of the scattering depends on the *surface area* of the scatterers
- We measure *density* using radiography
- Can determine Sauter Mean Diameter (diameter of a sphere with the same volume/surface area ratio)

Calculated SAXS signal of different size droplets at fixed density

\[
\frac{d\Sigma}{d\Omega}, \text{Å}^{-1} \text{str}^{-1}
\]

- 2 μm Diameter
- 20 μm Diameter
Small Angle X-ray Scattering

- Measurement: count the number of scattered x-rays as a function of angle
- Result: very small SMD, even very near the nozzle
- Size dramatically decreases within the first few mm of the nozzle
- Measurements provide another constraint on spray simulations: Quantitative measurements of near-nozzle spray breakup
Summary

- **Radiography** enables measurements of mass, even in multiphase flows
 - Sprays, cavitating flows
 - Can’t resolve species, currently limited to room temperature

- **Phase Contrast Imaging** allows very high speed imaging, even through steel
 - Image internal components, sprays
 - Can’t quantify the brightness in the images

- **X-Ray Fluorescence** can track atomic species, even in harsh environments
 - Mixing, cavitation, evaporating sprays, combustion, sooting flames
 - Complicated corrections required to analyze the data

- **X-Ray Small Angle Scattering** can measure particle size, without interference from multiple scattering
 - Near-nozzle SMD, soot sizing
 - Not yet validated against other techniques