CURRENT STATE-OF-THE-ART IN FUEL INJECTION AND SPRAY MODELING FOR INTERNAL **COMBUSTION ENGINE SIMULATIONS**

KELLY SENECAL, PH.D.

CONVERGE CFD SOFTWARE

© 2017 CONVERGENT SCIENCE. ALL RIGHTS RESERVED.

<u>Acknowledgements</u>

- The organizing committee for inviting me
- My colleagues at Convergent Science
- Our collaborators at national laboratories, universities, and other research institutions
- Our clients, who motivate us to continue to push the envelope
- This is only a small set of all of the great spray work being done

Collaborative research through the Engine Combustion Network accelerates CFD model development

Approach

Develop diesel and gasoline target conditions with emphasis on CFD modeling shortcomings

- Comprehensive experimental and modeling contributions
- Diesel Spray A, B, C, D
- Gasoline Spray G
- Results submitted to online archive with fields (like geometry and uncertainty) specifically tailored for **CFD** simulations

Impact

- Established in 2009, there are already 1400 citations of the ECN data archive
- Most automotive industry (light- and heavy-duty) use ECN archive to test their own CFD methods

Presentation Outline

- Why model sprays?
- What are the physics?
- How do we model sprays?
 ★ LE, EE, ELE methods
- How far have we come?
 ★ Grid convergence
- LES
- Model assumptions
- What's next?

Why Model Sprays?

Many practical applications involve sprays

- product performance
 - ★ Increased understanding of flow behavior
 - ★ Optimization
- In liquid-fueled IC engines, it's how the fuel is delivered to the engine!

Detailed modeling of spray processes may lead to substantial improvements in

• CFD: "Chocolate Fluid Dynamics"

Capresi in Viaggio

What are the Physics?

What are the Physics?

What are the Physics?

On the sheet breakup of liquid emanating from a garden nozzle

How Do We Model Sprays?

- Three major formulations
 - ★ Lagrangian (liquid) Eulerian (gas): LE
 - ★ Eulerian (liquid) Eulerian (gas): EE
 - ★ Eulerian-Lagrangian (liquid) Eulerian (gas): ELE (aka ELSA)
- Turbulence modeling
 - ★ RANS
 - ★ LES
 - ★ DNS

as time passes (think of a CFD mesh)

through space and time

- Eulerian: fluid motion focusing on specific locations in space through which the fluid flows
- Lagrangian: fluid motion where the observer follows an individual fluid parcel as it travels

How Do We Model Sprays?

- Three major formulations
 - ***** Lagrangian (liquid) Eulerian (gas): LE
 - ★ Eulerian (liquid) Eulerian (gas): EE
 - ★ Eulerian-Lagrangian (liquid) Eulerian (gas): ELE (aka ELSA)
- Turbulence modeling
 - *** RANS**

★ DNS

as time passes (think of a CFD mesh)

Lagrangian: fluid motion where the observer follows an individual fluid parcel as it travels through space and time

Eulerian: fluid motion focusing on specific locations in space through which the fluid flows

Lagrangian (liquid) - Eulerian (gas): LE

- The spray is represented by drops or "blobs" of liquid which are transported in the Lagrangian framework
- Drops with the same radius, velocity, temperature, etc. are grouped into "parcels" which are used to statistically represent the entire spray field
- The mass of each parcel is determined by the overall injected mass and the injected number of parcels
- The parcel concept can significantly reduce the computational time needed to calculate a spray
- It is important to note that there can be fewer than one drop per parcel

 \star This is critical when fine meshes are used

Lagrangian (liquid) - Eulerian (gas): LE

are too small to be resolved

Sub-grid models are needed for processes that occur on length scales that

EE Modeling Allows Us to Capture More Physics

- Able to predict effects of needle wobble
- Able to account for needle off-axis motion effects on nozzle-flow development
- Able to predict hole-to-hole variations

X-ray Phase-Contrast Imaging

Simulation

Eulerian-Lagrangian (liquid) - Eulerian (gas): ELE

- Hybrid of the previous two approaches where the liquid is represented by both Eulerian and Lagrangian phases
- The near nozzle, dense spray is modeled in the Eulerian phase
- The dilute spray downstream of the nozzle and at the spray edges is modeled in the Lagrangian phase
- Challenging to know when to transition from Eulerian to Lagrangian and how to initialize the Lagrangian parcels
- Requires finer mesh near the nozzle than LE methods
- Attractive for two-way coupling with the internal nozzle flow

Eulerian-Lagrangian (liquid) - Eulerian (gas): ELE

Combined EE-LE Approach

- Perform simulations with VOF and output a map file with detailed information of cells near the nozzle exit
- Setup a corresponding spray case
- Run the spray case with the map file by injecting parcels using the information in the map file

<pre># CONVERGE Release</pre>	2.2.0/ Jul 16, 2010	Run Date:Thu M	lar 12 16:00:32 2015		
# VOF map data file					
Time	0.000001096868	(s)			
Nozzle Center	-2.8656697e-08	5.1912572e-08 -1.	8247947e-03		
Nozzle ID	0	Region IDs	2 0		
Mass Flow Rate	1.8514582e-03	Mass Flow Rate Liqui	d 1.6358705e-03		
Total Mass	2.0064526e-10	Total Mass Liquid	1.7955243e-10	Ca	6.4355567e
тке	1.0556815e+03	EPS	9.0046500e+07		
Cell Count	386				
X	Y	Z	U	V W	Liquid
7.0187500e-05	6.9692500e-05 -1.	8167225e-03 2.3346	437e+01 2.2094160	0e+01 -5.4717892e+01	6.5304106e
7.0187500e-05	6.9692500e-05 -1.	8323475e-03 7.2084	868e+00 6.956837	le+00 -8.0779165e+01	3.0532000e
6.9231037e-05	8.4223656e-05 -1.	8167225e-03 1.0492	458e+01 1.440908	le+01 -3.6957784e+01	9.1206852e
6.9367675e-05	8.4379926e-05 -1.	8325243e-03 1.8485	206e+00 1.8964309	9e+00 -7.9451013e+01	2.6985315e
6.8902183e-05	9.9545583e-05 -1.	8375784e-03 -3.5218	970e+00 -4.7684550	5e+00 -7.5082612e+00	8.5404717e
8.3484074e-05	8.2990700e-05 -1.	8358934e-03 -3.6692	110e+00 -3.9185282	2e+00 -1.9443433e+01	1.7301063e
8.4691897e-05	6.8723769e-05 -1.	8167225e-03 1.9910	925e+01 1.2602644	4e+01 -3.8712477e+01	8.9611341e
8.4852622e-05	6.8862730e-05 -1.	8325289e-03 3.7655	610e+00 2.4706840	0e+00 -7.7076711e+01	2.6235820e
1.0012825e-04	6.8486902e-05 -1.	8376958e-03 -5.1682	496e+00 -3.621303	3e+00 -6.2173430e+00	8.0897979e
5.3178311e-05	9.7475677e-05 -1.	8167225e-03 1.7413	153e+00 1.692018	5e+01 -3.7635748e+01	9.2060987e
5.3471806e-05	9.8210768e-05 -1.	8330641e-03 3.9892	688e+00 5.2000723	3e+00 -7.1885932e+01	2.3455287e
3.8588056e-05	1.0045446e-04 -1.	8167225e-03 2.6322	428e+00 2.4586299	0e+01 -3.8223275e+01	9.0318222e
3.8632811e-05	1.0051696e-04 -1.	8324081e-03 3.2757	/837e+00 3.8029162	2e+00 -7.6391010e+01	2.6429269e
3.8050027e-05	1.1545412e-04 -1.	8380057e-03 -2.3973	346e+00 -4.9552632	2e+00 -4.4694328e+00	6.7581504e
2 22125000 05	1 00042500 04 1	01670250 02 0 7520	1400-00 2 027025	4 00460240-01	0 56001600

How Far Have We Come (LE)?

- The models have not changed much in 30 years!
- Most breakup models are based on length and time scales derived from unstable waves growing on the liquid surface

$$\eta = \eta_0 \exp(ikx + \omega t)$$
$$\omega = \omega(k)$$

 Ω_{lisa} = maximum value of ω $\Lambda_{lisa} = 2\pi / K_{lisa}$

$$\omega^{2} \Big[\tanh(kh) + Q \Big] + \omega \Big[4v_{1}k^{2} \tanh(kh) + 2iQkU \Big]$$

+
$$4v_{1}^{2}k^{4} \tanh(kh) - 4v_{1}^{2}k^{3}L \tanh(Lh) - QU^{2}k^{2} + \frac{\sigma k^{3}}{\rho_{1}} = 0$$

$$\omega_{r} = -2v_{l}k^{2} + \sqrt{4v_{l}^{2}k^{4} + QU^{2}k^{2} - \sigma k^{3}/\rho_{l}}$$

5000

4000

3000

2000

1000

(sm)

How Far Have We Come (LE)?

- 1987, original "wave" breakup model paper
- Cylinder of 30 mm radius and 100 mm length
- 24 radial, 15 azimuthal, 24 axial cells
- Smallest cell of 1 mm x 2 mm
- 4000 parcels
- "Numerical experiments with finer meshes and more drops confirmed that results are also grid- and timestep-independent."

How Far Have We Come (LE)?

• We've come a long way in the last 30 years!

Enabling Technologies

- Autonomous Meshing
 - Automatic (No User Meshing) \star
 - Adaptive Mesh Refinement \star
 - No more meshing by guessing \star
- Improved Accuracy
 - Increased resolution \star
 - Better models or even less modeling \star
 - Small changes cannot be predicted if simulation is \star overly smeared
- High Performance Computing
 - Capability Computing use computing power to \star solve one large problem in the least amount of time
 - Capacity Computing spread the computing \star power amongst many smaller problems so they can be run simultaneously

http://www.businessinsider.com/autonomous-car-limitations-2016-8

Autonomous Meshing

Grid Convergence

- Historically, grid convergence has been often overlooked
 - ★ Difficult to make one mesh, let alone a suite of meshes
 - \star Fine meshes = long runtimes
- sub-model constants
- be run for a simulation
- from knowledge of the accuracy/speed tradeoff

• Errors from being under-resolved were swept away through

Autonomous Meshing + HPC enable an ensemble of grids to

It is critical to make deliberate choices about mesh resolution

<u>Mhy is Grid Convergence Important?</u>

- Lagrangian droplet models are extensively used to simulate IC Engine sprays
- What cell sizes should be used?
- What causes errors in simulations?
 - \star input uncertainties?
 - deficiencies in sub-models? \star
 - \star under-resolved spray?

Many researchers have reported a strong dependency of the spray on grid size

How Do We Overcome Grid Dependency?

- Use sub-models that are <u>grid-convergent</u>, not grid-independent
- As the mesh is refined the results approach a reasonably converged answer
- Adaptive Mesh Refinement (AMR) is a key component of this approach as it allows the use of very fine grids around the spray

Why?

- Model development and validation can be done with confidence as the results will not keep changing as the mesh is refined
- Recommendations on cell sizes to optimize the accuracy/runtime tradeoff can be made

Cases for Demonstrating Grid Convergence

Fuel	Diesel
Ambient Composition	SF ₆
Ambient Temperature (K)	298
Ambient Density (kg/m³)	22
Injection Pressure (MPa)	80
Fuel Temperature (K)	363
Fuel Density (kg/m ³)	806
Nozzle Diameter (mm)	0.14
Injection Duration (ms)	1.45

Non-evaporating data of Margot et al. (CMT

Engine Combustion Network Average of 20-40 Spray Realizations

	ECN Spray Case	Vaporizing Spray	Reacting Spra
	Fuel	n-Dodecane	n-Heptane
	Ambient Composition	0% O ₂	10–21% O ₂
	Ambient Temperature (K)	900	800–1300
	Ambient Density (kg/m ³)	22.8	14.8, 30
)	Injection pressure (MPa)	150	150
	Fuel Temperature (K)	363	373
	Nozzle diameter (mm)	0.09	0.10
	Injection Duration (ms)	1.5	6.8
	Mass Injected (mg)	3.5	17.8

Results: Non-Evaporating Sprays

Embed Scale	Cell Size, dx (mm)	d_n / dx	Numbe
0	2.0	0.07	
1	1.0	0.14	
2	0.5	0.28	
3	0.25	0.56	
4	0.125	1.12	
5	0.0625	2.24	
6	0.03125	4.48	

 $dx = dx_{base} \times 2^{-(embed scale)}$

<u>Results: Non-Evaporating Sprays</u>

$$l_{t} = \left(v_{t}^{3} / \varepsilon \right)^{1/4} = C_{\mu}^{3/4} k^{3/2} / \varepsilon$$

- Turbulent length-scale shown is an indication of the smallest scales in the domain
- Length-scale achieves reasonable grid-convergence at 0.25 mm
- Length-scales predicted for coarse grids (1.0 mm and 0.5 mm) are significantly lower than the cell sizes
 - \star Understandable that these simulations are not converged as they do not resolve the smallest scales
- Cells of 0.25 mm and smaller are below the size of the turbulent length-scales throughout much of the spray
 - ★ Important scales are resolved resulting in grid-convergence

SCIENCE

Results: Optical Diesel Engine

How Many Parcels?

Embed Scale	Cell Size, dx (mm)	
0	2.0	
1	1.0	
2	0.5	
3	0.25	
4	0.125	
5	0.0625	
6	0.03125	

d_n / dx	Number of Injected Parcels	
0.07	2,000	
0.14	16,000	8x
0.28	128,000	8x
0.56	512,000	4x
1.12	2,048,000	4x
2.24	8,192,000	4x
4.48	21,000,000	2.5x

How Many Parcels?

- ILASS 2017 Paper
- n_{pc} is the number of parcels per cell
- c is the rate of convergence
- Keeping the number of parcels per cell constant, results in order 1/2 convergence • For first-order, n_{pc} should be increased by a factor of 2
- For second-order, n_{pc} should be increased by a factor of 8
- Verifies results of Senecal et al. for grid convergence
- But still doesn't answer the question how many parcels for a given cell size for a given amount of liquid mass?

ENS	10		1
	<i>n pc</i>	œ	Δx^{2c-1}

What About LES?

- increasingly practical technique for IC engine modeling.
- Recently it has been shown that LES can provide good qualitative and quantitative comparisons to instantaneous engine spray measurements since it directly resolves the large scales in the flow field.
- The typical approach for RANS modeling is to simulate a single injection as RANS tends to dampen out small-scale perturbations through the turbulent viscosity.
- LES modeling does not dampen out these small-scale perturbations and is similar to a single-shot experimental injection.
- realizations need to be simulated?

With parallel processing and faster CPU speeds, Large Eddy Simulation (LES) is becoming an

Two major questions when running LES: what is the grid resolution that should be used, and how many

LES Grid Convergence for Non-Evaporating Sprays

Embed Scale	Cell Size, dx (mm)	d_n / dx	Number of Injected Parcels	Cell
0	2.0	0.07	15,625	
1	1.0	0.14	15,625	
2	0.5	0.28	62,500	
3	0.25	0.56	250,000	
4	0.125	1.12	1,000,000	
5	0.0625	2.24	2,000,000	
6	0.03125	4.48	4,000,000	

 Reasonable grid convergence between 0.0625 and 0.125 mm

Non-evaporating data of Margot et al. (CMT)

LES Grid Convergence for Evaporating Sprays

- Coarse grids significantly over-predict the liquid length (both LES and RANS)
- For LES, cell sizes of 0.0625 mm and finer are grid convergent
- For RANS, cell sizes of 0.25 mm and finer are grid convergent

LES Grid Convergence for Evaporating Sprays

- LES vapor penetration exhibits grid-convergent behavior at 0.125 mm and agrees well with data
- wrong value
- Local instantaneous fuel-air mixing is better predicted with LES compared to RANS

RANS vapor penetration exhibits grid-convergent behavior at 0.25 mm but the later part converges to the

What About Multiple Realizations?

looking at global parameters such as penetration

 Similarities in penetration curves suggest that a single realization is enough when Spray A, 0.0625 mm

What About Multiple Realizations?

	1.0		
Base mesh size	1.0 mm	Poplization 1	
Fixed nozzle embedding	0.0625 mm	Redization 1	
Velocity AMR	0.0625 mm		
Maximum cell count specified	20 million		
Maximum cell count at 1.5 ms	18 million	Realization 2	<

Realization 3 • All LES realizations do a reasonable job matching both penetration and extent of vapor in the radial direction Realization 4

Realization 5

Examining Local Quantities

Transverse profiles at three locations

Centerline profiles between 20 and 80 mm •

Local Quantities - Velocity

Local Quantities - Velocity

Local Quantities - Mixture Fraction

Spread in mixing over the range over the range of the second secon

Spread in mixing over the range of predicted realizations is similar to what is seen

LES of Spray H

Case	0.25 mm
Base mesh size	1.0 mm
Fixed nozzle embedding	0.25 mm
Velocity AMR	0.25 mm
Number of realizations	28
Maximum cell count at 1.0 ms	1.3 million
Number of parcels injected	50,000

0.125 mm	0.0625 mm	0.03125 mm
1.0 mm	1.0 mm	1.0 mm
0.125 mm	0.0625 mm	0.03125 mm
0.125 mm	0.0625 mm	0.03125 mm
28	28	1
3.1 million	15.8 million	20 million (maximum)
200,000	800,000	3,200,000

LES of Spray H - Instantaneous & Mean Mixture Fraction

Instantaneous

Mean

LES of Spray H - Mixture Fraction

LES of Spray A - Reacting Mixture fraction Temperature

OH

*Pei et al., accepted to Combust Flame, 2015

How Many Realizations are Needed?

How Many Realizations are Needed?

tol (m/s)	Cycles to exceed 90%	Cycles to exceed 95%
0.5	19	19
1.0	14	15
2.0	8	9
5.0	2	3

tol	Cycles to exceed 90%	Cycles to exceed 95%
0.001	19	19
0.002	15	15
0.005	6	7
0.010	2	3

Model Assumptions - Primary Atomization

Some droplet/ligament formation. Liquid core intact

- close to the nozzle
- liquid core

Non-sinusoidal surface (departure from surface profile adopted in OS solution) very

Primary atomization happens downstream in the form of large scale oscillations of the

- Negligible initial disturbances naturally unstable modes will dominate flow
- Flow remains smooth in initial region

- Nozzle generated disturbances naturally unstable modes may not dominate
- Very quick and violent departure from linearity

What's Next?

- Improved scalability for multi-realization LES on more cores
- Incorporate non-linear effects into the atomization models
- Dynamic coupling of nozzle flows and the downstream spray
- Transition criteria and drop initialization for ELE models
 ★ Allows for two-way coupling
- Flash boiling
 - ★ Especially for GDI sprays
 - ★ Effect on atomization
- Wallfilm!
 - ★ Impingement outcomes
 - ★ Film boiling

lization LES on more cores o the atomization models s and the downstream spray ization for ELE models

THANK YOU! CONVERGECFD.COM

© 2017 CONVERGENT SCIENCE.

