OPTICAL TECHNIQUES THAT CAN BE APPLIED TO INVESTIGATE GDI ENGINE COMBUSTION

Richard Stone, Ben Williams and Paul Ewart

University of Oxford

ICE 2017 – 13th International Conference on Engines & Vehicles

Overview

SAE 2009-01-1060

2

θ

Single Cylinder Engine with Optical Access

•	Bore	89 mm
•	Stroke	90 mm
•	Capacity	562 cc
•	Compression Ratio	11.1

Injection Pressure •

11.1

150 bar

Malcolm Sandford, Graham Page and Paul Crawford, SAE Paper: 2009-01-1060

High Speed Imaging – Bowditch Piston

•Photron FASTCAM-1024PCI model 100K Colour Camera

•Resolution: 1024x1024 pixels

Page 4

Mie Scattering (upper) and Shadowgraphy (lower) of Fuel Spray

Murad, S. H. M, Camm, J., Davy, M., Stone, R., et al. "Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine". SAE Technical Paper 2016-01-0991, 2016

Selection of Spray Images at 20° C

•Variation of the spray area at 3° after SOI is due to shot-to-shot variations in injection;

•Spray area and evaporation duration increase as the ethanol content increases.

•Spray area and evaporation duration increase as the ethanol content increases.

Semi-Quantitative Data from Mie Scattering

•In general, warm fuel plumes exhibit smaller integrated pixel values than cold plumes;

- •The evaporation duration of warm plumes is shorter than for cold plumes;
- •The spray duration increases as the ethanol content increases;
- •Standard deviations in the 'plateau' region are always smaller than at both ends.

L Chen, F Xu, R Stone and D Richardson. 'Spray Imaging, Mixture Preparation and Particulate Matter Emissions Using a GDI Engine Fuelled With Stoichiometric Gasoline-Ethanol Blends', IMechE, London, C1328/002, pp 43-52, 2011

Flame Front Imaging

Ma, H., Marshall, S., Stevens, R., and Stone, R. "Full-bore crank-angle resolved imaging of combustion in a four-stroke gasoline direct injection engine." Proc. IMechE Part D: Journal of Automobile Engineering 221, no. 10: 1305-1320, 2007.

$$I_{\lambda b} = \frac{2C_1}{\lambda^5 \left[\exp\left(C_2/\lambda T\right) - 1\right]}$$

Black Body Radiation, C_1 , C_2 are Planck's constants

$$\varepsilon_{\lambda} = 1 - \exp\left(-KL/\lambda^{\alpha}\right)$$

K is the absorption coefficient per unit flame thickness, and *L* is the geometric flame thickness along the optical path length of the detection system.

Hottel and Broughton: $\alpha = 1.39$.

Three-Colour Pyrometry

R	G	R	G	R	G
G	В	G	В	G	В
R	G	R	G	R	G
G	В	G	В	G	в

Bayer Colour Filter Array

Colour Filter Array Calibration Procedure

Colour Filter Array Calibration

Integrate: [Blue, [Green, [Red

Simonini, S., Elston, S. J., and Stone, C. R. "Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method." Proc. IMechE Part C: Journal of Mechanical Engineering Science 215, no. 9: 1041-1052, 2001.

Toluene, Lambda = 0.9

Three-Colour Pyrometry; Toluene with Lambda = 0.9

Ma, H., Marshall, S., Stevens, R., and Stone, R. "Full-bore crank-angle resolved imaging of combustion in a four-stroke gasoline direct injection engine." Proc. IMechE Part D: Journal of Automobile Engineering 221, no. 10: 1305-1320, 2007.

Laser Induced (Thermal) Grating Specroscopy - LIGS

SAE INTERNATIONAL

In-Cylinder AFR from PLIF

Spray Imaging

Williams, B., Ewart, P., Wang, X., Stone, R., et al., "Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-directinjection engine: effects of residual exhaust gas on quantitative PLIF," Combustion and Flame, 157(10), pp.1866-1878, 2010.

Calibration Loop

Sequence of PLIFimages - evolution of the fuel distribution with crank angle and fuel fraction. The late injection timing for this sequence was 140 BTDC. Each image is an average of 32 single shots

Two Colour PLIF (T-PLIF) Combined with LI(T)GS

ICE 2017 – 13th International Conference on Engines & Vehicles – Paper # 17ICE-0047/2017-24-0046 17

Two Colour PLIF (T-PLIF)

20 sequential LIGS signals at crank angles between 90° and 50° BTDC at intervals of 10°

High Speed Videoing

- Cameras are becoming faster, more sensitive, with greater resolution and a larger dynamic range
- $\circ~$ LED illumination is readily controllable and low cost
- Computing resources (hardware and software) continue to improve

Laser-Based Techniques

- \circ Lasers are reducing in cost and size
- Lasers are becoming faster, and more powerful
- Companies offer turn-key solutions with dedicated software
 - \circ $\,$ But applications to engines are not always straightforward $\,$
- Optical access engines will continue to be important for the validation of computer modelling

Any Questions?

Catalyst Light-Off Strategy

•80% of Emissions Occur During the first 100s of a drive cycle.

•Essential to Have Fast Catalyst Light-Off

Strategy

•1st Injection during induction relatively well mixed but lean mixture in the cylinder before ignition,

•2nd Injection close to ignition stratified fuel rich mixture in the central region of the combustion chamber.

• Ignition after top dead centre

Injection – 6000 pps

- Misfire - Normal - Slow-burn

