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Internal combustion engine development 
will never stop!

Efficiency increase Pollutant emission control

Waste heat 

recovery
Downsizing

After-

treatment

Alternative 

fuels
Direct 

injection

Combustion 

systems

Background
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Main research topics

CFD simulation of IC engines:

• combustion and emissions;

• GDI and Diesel sprays;

• alternative fuels for I.C. engines;

• reacting flows and after-treatment devices (SCR, DPF);

• Large Eddy Simulation of engine-like geometries;

• integrated 1D-3D fluid-dynamic models;

• 1D thermo-fluid dynamic modeling;

• noise and acoustics.
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CFD code: OpenFOAM/Lib-ICE

• We started to work with OpenFOAM in 2000.

Our group is currently involved in several

activities in Europe, concerning OpenFOAM

development and applications.

• OpenFOAM is a free-to-use Open Source

numerical simulation software with extensive

CFD and multi-physics capabilities, written in a

highly efficient C++ object-oriented programming.

• Free-to-use, allows to exploit high parallelization

with only hardware costs.

• Ideal platform for research collaborations.

• Very wide diffusion with 2000 downloads/week.
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CFD code: OpenFOAM/Lib-ICE

Tool:

The ICE group of Politecnico di Milano has

contributed to develop the engine library under

OpenFOAM technology (Lib-ICE):

• Moving mesh algorithms

• Spray modeling

• Combustion process modeling

• DPF and SCR modeling

• 1D-3D coupling interface

• Non-linear acoustics modeling

•in-house CFD libraries and solvers (Lib-ICE)

developed under the OpenFOAM® technology.
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 GASDYN model: 1D simulation of wave motion and
chemical species transport, with reactions in the gas and solid
phase. Modeling of the main after-treatment devices: 3W catalyst,
DPF, DOC, SCR, deNOx trap, secondary air injection, etc.

Silencers

Exhaust after-treatment system

Air injection system

Combustion

3way CC SCR

DOCDPF
Turbocharger

Intake system

NoiseExhaust manifold

1D thermo-fluid dynamic modeling of IC engines
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• Developed at PoliMi during

the last 20 years.
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 Reactions of species in the flow (exhaust manifold and
catalysts).

Fundamental equations

 Fundamental equations in strong conservative form for
1D, unsteady, reacting flows in engine ducts:
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Urea injector

Hydrolysis SCR
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Thermic reactor

Catalytic reactor

SCR modeling: urea injection and reactions

HNCO  NH      (s) NH-CO-NH 322 

“Standard” SCR reactionO6H  4NO  4NO  4NH 2223 

Urea thermic 

decomposition

4NH3 + 3O2  2N2 + 6H2O
8NH3 + 6NO  7N2 + 12H2O
4NH3 + 2NO + 2NO2  2N2 + 6H2O “Fast” SCR reaction

Ammonia Oxidation

Isocyanic acid hydrolysis
232 CO  NHOH  HNCO 

O xH (s) NH-CO-NH  (aq.) NH-CO-NH 22222 
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Calculated and measured de-NOx efficiency and NO emission 
level versus catalyst temperature at 2200 rpm.

SCR modeling: urea injection and reactions
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Pre-Processing In-cylinder flows  & combustion After-treatment

Automatic mesh 
generation

Gas exchange, fuel air mixing
SI, CI, PCCI, HCCI combustion

After-treatment 
modeling

SCR, DPF, TWC, DOC

OpenFOAM at PoliMi (Lib-ICE)
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New sub-models for multi-hole nozzles

• Injection: Huh, Reitz-Bracco, Nurick
• Atomization : Huh-Gosman, Bianchi
• Breakup: KHRT
• Wall-interaction: Bai and Gosman, 

Stanton and Rutland
• Evaporation: based on Spalding mass 

number

We > 2600・La-0.18We > 5.0We < 5.0

Wall-film model (finite-area)

• Mass, momentum and energy 
equations for the liquid film solved on 
mesh boundary. 

RT breakupKH breakup

Blob

injection
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Injector 1
Injector 2

This work was sponsored and carried out in collaboration with 

Full-cycle simulation of GDI engines

GDI engine simulations
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• Unsteady flow solver with Lagrangian tracking of particles.

• Multi-component liquid mixture and homogeneous chemical 

reactions (urea thermal decomposition).

• Wall film formation and evaporation.

After-treatment: SCR 
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• Unsteady flow solver with Lagrangian tracking of particles.

• Multi-component liquid mixture and homogeneous chemical 

reactions (urea thermal decomposition).

• Wall film formation and evaporation.
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Urea spray in a duct

• Liquid urea properties have been added in order to account for
AdBlue or urea solutions.

• Inclusion of chemistry to model the thermal decomposition of urea
particles into HNCO and NH3 .

H2O distribution

NH3 distribution
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Selective Catalytic Reduction (SCR)
The chemical and physical processes to be taken into 

account are:

• the injection and evaporation of urea solution;

• the thermal decomposition of urea in gas phase;

• the hydrolysis of isocyanic acid generated during the urea

thermal decomposition process;

• the reactions of NOx reduction (fast and standard) occurring onto

the catalytic bed:
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Injection of urea-water solution and solid deposits

Possible solid urea 
byproduct deposition

Wall impingement can be a paramount parameter to be taken into 

account in the generation of an uniformly distributed gaseous 

mixture.

Direct injection of urea-water solution 

in the pre-catalytic section:

• Low pressure injection.

• No secondary breakup.

• Slow urea thermal decomposition.
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• Multi-component liquid mixture customized 

properties for urea along with multi-component 

liquid film.

• Temperature dependence of the spray-wall 

interaction and wall cooling effect.

SCR modeling: injection of AdBlue

Cold wall Hot wall

T* = 0.8 T* = 1.2

Absolute We = 264

Normal We = 137

T* = Twall / Tsat

8
1

8
5

LaWeK 

(In collaboration with EMPA, Dr. P. Dimopoulos

and Fiat Industrial - CNH)
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Film thickness Film temperature

SCR: wall film modeling
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After-treatment: open-cell foams 

Foam samples

CFD simulation of open-cell foams

(in collaboration with EMPA, Dr. P. Dimopoulos)
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Micro-CT scans (at University of Exeter)
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porosity: 95-97% porosity: 85-90% porosity: 45-55%
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Open-cell foam

Filtering media

Al alloy

95% porosity 

40 ppi

SiC

86% porosity

80 ppi

Applications:

Catalytic 

substrates for 

after-treatment 

devices (as an 

alternative to 

traditional 

honeycomb)

Cordierite

50% porosity

16 µm pore

Applications:

Removal of 

particulate matter 

from exhaust gas 



POLITECNICO

DI MILANO

From micro-scale to full scale simulation of 

after-treatment systems:

Open-cell foams for after-treatment systems
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Solid conduction simulations Conjugate heat-transfer simulations

Conduction coefficients

Convection

coefficients
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EX80-100/17 EX80-200/14

Simulation of flow through a 

couple of DPF channels
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gas

near wall 

gas

washcoat

solid wall

Mass transfer between 

gas phase and washcoat

catalytic surface

A library for the modelling of surface reactions has been 

implemented on the basis of the OpenFOAM code.

Reaction heat is released and 

transferred to fluid and solid 

phase 
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Al foam 95% porosity – 40 ppi / Micro-CT reconstruction

• Surface reaction on washcoat

region

• Infinitely fast reaction model

• Conjugate heat transfer

• Fluid: inlet T=300K

• Solid: fixed T=300K on the inlet 

side, adiabatic elsewhere.

CH4 + O2 → CO2 + H2O
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Al foam 95% porosity – 40 ppi / Micro-CT reconstruction
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CO oxidation

CO+0.5O2 -> CO2

H2 oxidation

H2+0.5O2 -> H2O

HC oxidation

C3H6 + 3O2 -> 3CO2 + 6H2O 

NOx reduction

CO+NO -> CO2+0.5N2

H2+NO -> H2O + 0.5N2

Steam water reforming

CO+H2O -> CO2 + H2

C3H6 + 3H2O -> 3CO2 + 6H2
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CFD models (both 1D and 3D) represent robust tools to 
investigate the behavior of after-treatment systems and 
help the design for maximum conversion efficiency.

Our experience is focused on self-developed libraries in 
GASDYN (1D) and OpenFOAM (LibICE).

Conclusions 
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New solutions for catalytic substrates, based on open-cell 
foams, will be studied, to achieve a general improvement 
of performances (pressure loss, warm-up, precious metal 
loading…).

Conclusions 
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Thanks for your attention!

Questions?

Conclusions 


