CFD Modeling Techniques for the Design of After-Treatment Systems

A. Onorati, G. Montenegro, A. Della Torre, L. Nocivelli

Internal Combustion Engine Group Department of Energy, Politecnico di Milano

Background

Internal combustion engine development will never stop!

Research arguments at PoliMi

Main research topics

CFD simulation of IC engines:

- combustion and emissions;
- GDI and Diesel sprays;
- alternative fuels for I.C. engines;
- reacting flows and after-treatment devices (SCR, DPF);
- Large Eddy Simulation of engine-like geometries;
- integrated 1D-3D fluid-dynamic models;
- 1D thermo-fluid dynamic modeling;
- noise and acoustics.

CFD code: OpenFOAM/Lib-ICE

- OpenFOAM is a free-to-use Open Source numerical simulation software with extensive CFD and multi-physics capabilities, written in a highly efficient C++ object-oriented programming.
- Free-to-use, allows to exploit high parallelization with only hardware costs.
- Ideal platform for research collaborations.
- Very wide diffusion with 2000 downloads/week.

 We started to work with OpenFOAM in 2000. Our group is currently involved in several activities in Europe, concerning OpenFOAM development and applications.

Time: 386.00

CFD code: OpenFOAM/Lib-ICE

The ICE group of Politecnico di Milano has contributed to develop the engine library under **OpenFOAM** technology (Lib-ICE):

- Moving mesh algorithms
- Spray modeling
- Combustion process modeling
- DPF and SCR modeling
- 1D-3D coupling interface
- Non-linear acoustics modeling

Tool:

•in-house CFD libraries and solvers (Lib-ICE) developed under the **OpenFOAM**® technology.

1D thermo-fluid dynamic modeling of IC engines

• GASDYN model: 1D simulation of wave motion and chemical species transport, with reactions in the gas and solid phase. Modeling of the main after-treatment devices: 3W catalyst, DPF, DOC, SCR, deNOx trap, secondary air injection, etc.

1D simulation code: GASDYN

 Fundamental equations in strong conservative form for 1D, unsteady, reacting flows in engine ducts:

Reactions of species in the flow (exhaust manifold and catalysts).

SCR, 1D modeling: six cylinder Diesel engine

SCR modeling: urea injection and reactions

 $\begin{aligned} \mathsf{NH}_2 - \mathsf{CO} - \mathsf{NH}_2 &(\mathsf{aq.}) \to \mathsf{NH}_2 - \mathsf{CO} - \mathsf{NH}_2 &(\mathsf{s}) + \mathsf{xH}_2\mathsf{O} \\ \mathsf{NH}_2 - \mathsf{CO} - \mathsf{NH}_2 &(\mathsf{s}) \to \mathsf{NH}_3 + \mathsf{HNCO} & \underbrace{\mathsf{Urea \ thermic}}_{\mathsf{decomposition}} \end{aligned}$

 $HNCO + H_2O \rightarrow NH_3 + CO_2$ $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$

Isocyanic acid hydrolysis "Standard" SCR reaction

 $\begin{array}{l} 4\mathsf{NH}_3 + 3\mathsf{O}_2 \rightarrow 2\mathsf{N}_2 + 6\mathsf{H}_2\mathsf{O} \\ 8\mathsf{NH}_3 + 6\mathsf{NO} \rightarrow 7\mathsf{N}_2 + 12\mathsf{H}_2\mathsf{O} \\ 4\mathsf{NH}_3 + 2\mathsf{NO} + 2\mathsf{NO}_2 \rightarrow 2\mathsf{N}_2 + 6\mathsf{H}_2\mathsf{O} \end{array}$

Ammonia Oxidation

"Fast" SCR reaction

SCR modeling: urea injection and reactions

Calculated and measured de-NO_x efficiency and NO emission level versus catalyst temperature at 2200 rpm.

OpenFOAM at PoliMi (Lib-ICE)

Spray and wall-film modeling

New sub-models for multi-hole nozzles

- **Injection**: Huh, Reitz-Bracco, Nurick
- Atomization : Huh-Gosman, Bianchi
- Breakup: KHRT
- Wall-interaction: Bai and Gosman, Stanton and Rutland
- Evaporation: based on Spalding mass number

Wall-film model (finite-area)

 Mass, momentum and energy equations for the liquid film solved on mesh boundary.

GDI engine simulations

Full-cycle simulation of GDI engines

This work was sponsored and carried out in collaboration with

After-treatment: SCR

- Unsteady flow solver with Lagrangian tracking of particles.
- Multi-component liquid mixture and homogeneous chemical reactions (urea thermal decomposition).
- Wall film formation and evaporation.

After-treatment: SCR

- Unsteady flow solver with Lagrangian tracking of particles.
- Multi-component liquid mixture and homogeneous chemical reactions (urea thermal decomposition).
- Wall film formation and evaporation.

Urea spray in a duct

• Liquid urea properties have been added in order to account for AdBlue or urea solutions.

- Inclusion of chemistry to model the thermal decomposition of urea particles into HNCO and $\rm NH_3$.

Selective Catalytic Reduction (SCR)

The chemical and physical processes to be taken into account are:

- the injection and evaporation of urea solution;
- the thermal decomposition of urea in gas phase;
- the hydrolysis of isocyanic acid generated during the urea thermal decomposition process;

 the reactions of NOx reduction (fast and standard) occurring onto the catalytic bed:

 $\begin{array}{rccc} NH_2 - CO - NH_2 & \rightarrow & NH_3 + HNCO \\ HNCO + H_2O & \rightarrow & NH_3 + CO_2 \\ 2NH_3 + 2NO + 0.5O_2 & \rightarrow & 2N_2 + 3H_2O \\ 2NH_3 + NO + NO_2 & \rightarrow & 2N_2 + 3H_2O \\ 2NH_3 + 1.5O_2 & \rightarrow & N_2 + 3H_2O \end{array}$

Injection of urea-water solution and solid deposits

Wall impingement can be a paramount parameter to be taken into account in the generation of an uniformly distributed gaseous mixture.

Direct injection of urea-water solution in the pre-catalytic section:

- Low pressure injection.
- No secondary breakup.
- Slow urea thermal decomposition.

Possible solid urea byproduct deposition

SCR modeling: injection of AdBlue

- Multi-component liquid mixture customized properties for urea along with multi-component liquid film.
- Temperature dependence of the spray-wall interaction and wall cooling effect.

Cold wall

 $T^* = 0.8$

Absolute We = 264Normal We = 137

(In collaboration with **EMPA**, Dr. P. Dimopoulos and Fiat Industrial - CNH)

SCR: wall film modeling

After-treatment: open-cell foams

CFD simulation of open-cell foams

Foam samples

(in collaboration with **EMPA**, Dr. P. Dimopoulos)

Micro-CT scans (at University of Exeter)

- ▶ Micro-CT scanner applied for the reconstruction of foam micro-structure
- X-ray cone beam passes through a rotating sample
- A detector collects 2D projection images of the sample at different angles
- SD voxel dataset is reconstructed from the 2D slices

Micro-CT: image processing

Al foam porosity: 95-97%

SiC foam porosity: 85-90%

Cordierite

porosity: 45-55%

Open-cell foams for after-treatment systems

Open-cell foam

Al alloy 95% porosity 40 ppi

SiC 86% porosity 80 ppi

Applications: Catalytic substrates for after-treatment devices (as an alternative to traditional honeycomb)

Filtering media

PORE

Cordierite 50% porosity 16 µm pore

Applications: Removal of particulate matter from exhaust gas

Open-cell foams for after-treatment systems

From micro-scale to full scale simulation of after-treatment systems:

2.1 mln cells 93% hex - 7% pol

Micro-scale: heat-transfer simulations

Solid conduction simulations

Conjugate heat-transfer simulations

Validation: Diesel Particulate Filter

Modelling catalytic reactions

A library for the modelling of **surface reactions** has been implemented on the basis of the **OpenFOAM** code.

Reacting flow simulation

Al foam 95% porosity – 40 ppi / Micro-CT reconstruction

Т

<u>3</u>50

340

320

300

 $CH_4 + O_2 \rightarrow CO_2 + H_2O$

- Surface reaction on washcoat region
- Infinitely fast reaction model
- Conjugate heat transfer
- Fluid: inlet T=300K
- Solid: fixed T=300K on the inlet side, adiabatic elsewhere.

Reacting flow simulation

Al foam 95% porosity – 40 ppi / Micro-CT reconstruction

Application example: TWC

CO oxidation $CO+0.5O_2 \rightarrow CO_2$

 H_2 oxidation H_2 +0.5 O_2 -> H_2O

HC oxidation $C_3H_6 + 3O_2 \rightarrow 3CO_2 + 6H_2O$

NO_x reduction CO+NO -> $CO_2+0.5N_2$ H₂+NO -> H₂O + 0.5N₂

Steam water reforming $CO+H_2O \rightarrow CO_2 + H_2$ $C_3H_6 + 3H_2O \rightarrow 3CO_2 + 6H_2$

CFD models (both 1D and 3D) represent **robust tools** to investigate the behavior of after-treatment systems and help the design for maximum conversion efficiency.

Our experience is focused on self-developed libraries in **GASDYN** (1D) and **OpenFOAM** (LibICE).

New solutions for catalytic substrates, based on **open-cell foams**, will be studied, to achieve a general improvement of **performances** (pressure loss, warm-up, precious metal loading...).

Thanks for your attention!

Questions?

