

Estimation of the Effects of Catalyst Substrates on Automotive Engine Performance with a 0D real-time engine model

<u>Agostino Gambarotta</u>, Marco Crialesi Esposito Industrial Engineering Department – University of Parma

Panayotis Dimopoulos Eggenschwiler, Francesco Lucci EMPA-Swiss Federal Laboratories for Materials Science and Technology - Zurich

An SAE International Section

SAENA Workshop 2016 - After-treatment systems for diesel engines Reggio Emilia - June 27-28, 2016

Outline of the paper

- 1. Ceramic Foams as catalysts substrates
- 2. Modelling tools:
 - a. CA model of I.C.Engine
 - b. Exhaust System model
 - c. Catalyst model
- 3. Simulation: 4cyl Diesel engine on EUDC with
 - a. Honeycomb substrate
 - b. Foam substrate
- 4. Comparison wrt engine performance (bsfc)
- 5. Conclusions

2

Ceramic Foam as catalysts substrates

Honeycomb

commonly used
cheap
BUT:
Bur flow uniformity

 $\ensuremath{\textcircled{\ensuremath{\ensurem$

Foam

improved mixing
low thermal inertia

BUT:

⊖ higher pressure losses

Scope: estimate the influence of catalyst substrate structure on fuel consumption and engine performance during transients

CA model of I.C.Engine

4

Model causality and I/O

Improvement of the engine model

Estimation of the Effects of Catalyst Substrates on Automotive Engine Performance with a 0D RT engine model

Exhaust system model: heat exchange

0D energy conservation equation:

$$c_{v}\frac{dT}{dt} = \dot{m}_{exh} \cdot h_{exh} - \dot{m}_{tur} \cdot h_{tur} - \dot{m}_{EGR} \cdot h_{EGR} - \dot{Q}_{in}$$

Catalyst model: layout

0D lumped parameter model:

- ➢ inlet and outlet volumes → F&E approach
- ➤ core (monolith): pressure losses & thermal dynamics → QSF approach

Substrate thermal inertia

Core model: gas flow

10

Correlations for pressure losses and heat transfer

11

Overall Simulink[®] model of the catalyst

Function Block Parameters: Foam catalyst "Lucci" exponential	3
Parameters	-
SSA parameterization On	
Inlet/outlet oxidation ratio [-]	
100	
Catalyst cross-sectional area [m^2]	
0.01	
Catalyst length [m]	
0.15	
External pore diameter [m]	
0.002	
Porosity [-]	
0.90	
Tortuosity [-]	
1.1	
Specific Surface Area imposed SSAi [m^2/m^3]	
1000	
Insulating layer thickness [m]	
0.006	
Insulating material thermal conductivity [W/(m*K)]	
0.03	н
Total hemispherical emissivity [-]	
0.6	
External temperature [K]	
300	
External pressure [Pa]	
101325	
Monolith density [kg/m^3]	
3920	
Monolith specific heat [J/(kg*K)]	L
800	-
OK Cancel Help Apply	

Simulation: 4cyl TC Diesel during EUDC

- feedforward map-based + feedback PI for torque
- idle operating conditions
- fuel "cut-off" during decelerations

Driving cycle Simulations (EUDC)

Layouts:

a. Honeycomb substrate (from "Giani" [12]) ⁽¹⁾

⁽¹⁾ V=1,5I, L=15cm, ε=63%, SSA=2700 m²/m³

- b. Real foam substrate (from "Giani" [12]) ⁽²⁾
- c. Kevin cells substrate (from "Lucci" [22]) ⁽²⁾

⁽²⁾ V=1,5I, L=15cm, ε=73%, SSA=1000 m²/m³

Outputs:

- a. Engine operating parameters
- b. Cumulative fuel consumption

14

Results: DOC and turbine Δp

Results: intake & exhaust manifold pressure

Results: Ap between manifolds

- the higher Δp in the catalyst give rise to a Δp between manifolds that is almost equal
- higher pumping losses when using foams

Results: overall fuel consumption

- differences are low
- overall fuel consumption:

Honeycomb = 254 g (22,9 km/l) Real foam ("Giani") +0.15 % Kelvin cells ("Lucci") + 0.21 %

Results: monolith temperature

Results: overall fuel consumption

Results: overall fuel consumption

Conclusions & Future

Conclusions:

- > Enhancements in the OD CA real-time engine model in Simulink[®]:
 - ✓ Exhaust system model
 - Catalyst model (gas flow and thermal behaviour) for both honeycomb and foam substrates
- Simulation of the engine behaviour during a driving cycle (EUDC)
- Estimation of the effects of substrate structure on overall fuel consumption within the EUDC:
 - ✓ slight increase in fuel consumption for foam supports
 - ✓ lower thermal inertia of foams (effects on "light-off" & "cut-off")
 - ✓ lower volumes for the foam supports (about L≈1/3 vs. honeycomb) led to the same overall fuel consumption over an EUDC

Conclusions & Future

Future developments:

- Experimental validation of the model
- Matching of the engine model with a vehicle + driver model for a direct simulation of driving cycles
- More detailed models for emissions formation and conversion efficiencies to analyse the effects of thermal inertias ("light-off" & "cut-off" phases)
- VGT/EGR/SOI control strategies
- Development of fast & physically-based models for other after-treatment systems (SCR)
- Extension of the analysis to S.I.engines

Thank You for your attention !

Estimation of the Effects of Catalyst Substrates on Automotive Engine Performance with a 0D real-time engine model

<u>Agostino Gambarotta</u>, Marco Crialesi Esposito Panayotis Dimopoulos Eggenschwiler, Francesco Lucci

"Judge a man by his questions rather than by his answers." Voltaire

