

Virtual Sensors for Diesel Engine and After-treatment Management

Federico Covassin Magneti Marelli S.p.A. - Powertrain

Reggio Emilia June 27th 2016

Powertrain

Index

Company Overview

- Magneti Marelli Powertrain (Diesel) System
- Standard Emission trend and technologies
- O2 intake Virtual Sensor for Diesel engine management
- NOx Virtual Sensor for after-treatment management
- NOx Virtual Sensor adaptivity concepts
- Conclusions

Company Overview

Magneti Marelli is an international company committed to the design and production of hi-tech systems and components for the automotive sector.

Magneti Marelli Worldwide Presence

Magneti Marelli Powertrain Worldwide Presence

* % of "make" sales

Customer Brand Portfolio

Magneti Marelli Powertrain – Diesel Systems

Emission Standard trend

Two main ways for NOx reduction on Diesel Engine

- ➢ NOx Engine Out reduction → Combustion improvement (e.g. EGR HP, EGR LP)
- After-treatment technologies (e.g. LNT, SCR, SCRonF) could be combine for reach the target

O2 Virtual Sensor

Intake O2 and NOx Virtual Sensors

Jun 27th, 2016 10

Intake O2 Virtual Sensor

Purpose of intake O2 measure:

- Estimation of effective EGR ratio (e.g. EGR Valve Control Management)
- Enhancement of conventional and advanced combustion control (PCCI, HCCI,LTC)
- Improvement of NOx prediction during engine transients, suitable for both dynamic adjustments of EMS strategies and management of after-treatment devices.

MEAN VALUE MODEL

- Filling and Emptying for intake/Exhaust manifolds
- Mass and energy conservation in any control volume
- Homogeneous pressure, temperature and chemical composition in the intake manifold
- Instantaneous and perfect mixing of incoming flows
- No heat transfer through manifold walls

 Low computational demand and identification issues

- Suitable for onboard implementation
- Model accuracy fully satisfactory

Mean Value model Main equation

Oxygen mass fraction in the intake manifold

$$\dot{O}_{2man} = \frac{R_{air}T_{man}}{P_{man}V_{man}} \left[\left(O_{2,exh} - O_{2,man} \right) \dot{m}_{egr} + \left(O_{2,amb} - O_{2,man} \right) \dot{m}_{air} \right]$$

Intake manifold temperature

$$\dot{T}_{man} = \frac{R_{air}T_{amb}}{P_{man}V_{man}} \left[\left(k_{air}T_{egr} - T_{man} \right) \dot{m}_{egr} + \left(k_{air}T_{ic,out} - T_{man} \right) \dot{m}_{egr} - \left(k_{air} - 1 \right) T_{man} \dot{m}_{cyl,in} \right]$$

$$EGR \qquad CYL IN$$

AIR Electronic Throttle Valve Actuator

Prediction of Exhaust O₂ concentration in place of UEGO measurement

$$\dot{O}_{2,exh} = \frac{R_{exh}T_{exh}}{P_{exh}V_{exh}} \left[\left(O_{2,cyl,out} - O_{2,exh} \right) \dot{m}_{cyl,out} \right]$$
$$O_{2,cyl,out} = \frac{\dot{m}_{cyl,in}O_{2,man} - \alpha_{st}\dot{m}_{f}O_{2,man}}{\dot{m}_{cyl,in} + \dot{m}_{f}}$$

O2 Experimental results

Common-Rail Diesel 1.3 – EGR/HP - VGT

Common-Rail Diesel 2.3 – EGR/HP - VGT

Engine Key characteristics	
Rated Power and	150Hp and
Max. Torque	320Nm
Cylinders	4 in line
Displacement	2286 cm ³
Valves per cylinder	4 (DOHC)
Combustion	Diesel Direct Injection
System	
Compression Ratio	19:1
Synchronisation	 Crankshaft position sensor
system	 Camshaft position sensor
Fuel Injection	Common Rail Solenoid Injectors
System	(160 MPa)
Intake Air System	Electrical Throttle Body
	actuator
	Intake manifold pressure and
	temperature sensor
Turbo charging	VGT turbocharger, vacuum
System	controlled with vacuum electro-
	modulator with VGT position sensor
EGR System	 DC-Motor EGR valve +
	position feedback
	Air Flow Meter, before Turbo-
	Compressor
Exhaust Gas	1 linear oxygen sensor
System	(UHEGO) in the exhaust pipe,
	downstream of turbine just
	before catalyst
Atter-treatment	Oxidant Catalyst + Diesel
System	Particulate Filter (coated soot
	filter, without additive), close-
	coupled
	DPF Differential pressure
	sensor
	DPF inlet temperature sensor

Purpose:

- After-Treatment Device Management (LNT, SCR, SCRoF, etc.)
- Diagnosis After-treatment system:
 - > NOx Sensor diagnosis: plausibility check & functional diagnosis

Recurrent Neural Network in one slide

- Black Box Model
- Basic elements (neurons) are combine together with connections and are placed in different layers depending on the architecture
- Right inputs are fundamental for good result
- The training and validation phases are important to make more or less strong connections
- A lot of NN parameters impact the final result: number of neuros, number of layers, NN architecture, training algorithm, epoch of training, initial conditions, etc.

Recurrent Neural Network:

The current output also depends on the previous outputs

$$y(t,\theta) = F \begin{bmatrix} y(t-1,\theta), ..., & y(t-i,\theta), \\ x_1(t), ..., & x_1(t-j+1), \\ x_2(t), ..., & x_2(t-j+1), \\ x_3(t), ..., & x_3(t-j+1) \end{bmatrix}$$

Recurrent Neural Network training

Recurrent Neural Network

- Delay compensation from measured data
- RNN identification/ training:
 - Parametric analysis and selection of the most suitable neural network structure;
 - Deterministic analysis to set RNN weights initial conditions;
 - RNN Pruning by means of the Optimal Brain Surgeon (OBS) algorithm.

RNN main parameters:

- N. of Layers: 3
- N. of neurons in hidden layer: 18
- N. of epoch: 80
- Lag input space: 2
- Lag output space: 2

NOx Experimental Result

Common-Rail Diesel 1.3 – EGR/HP - VGT

*NOx Engine Out measured with NOx production sensor

Recursive Least Square based Adaptation

parameter already implemented. \rightarrow Low CPU load

•

 RNN re-training procedure → more powerful but high CPU load

Adaptive Control

Least Squares

Recursive Least Square based Adaptation

MAGNET

NOx measured, plus imposed drift of -30%.

- Emissions standard trend requests strict pollutant limit
- Engine Management System and after-treatment will be more complex and more expensive and Virtual Sensors represent a good opportunity
- O2 intake estimation with model based approach gives good result and could be implemented on ECU for real-time estimation
- NOx engine out estimation with Recurrent Neural Network also
 present good results with benefits on calibration effort
- Parameters update (adaptivity) is implemented with good result recovering the system dispersion

Thank You

Backup