Virtual Sensors for Diesel Engine and After-treatment Management

Federico Covassin
Magneti Marelli S.p.A. - Powertrain

Reggio Emilia
June 27th 2016
Company Overview
Magneti Marelli Powertrain (Diesel) System
Standard Emission trend and technologies
O2 intake Virtual Sensor for Diesel engine management
NOx Virtual Sensor for after-treatment management
NOx Virtual Sensor adaptivity concepts
Conclusions
Company Overview

Magneti Marelli is an international company committed to the design and production of hi-tech systems and components for the automotive sector.
Magneti Marelli Worldwide Presence

Sales 2015	7.3 bn €
R&D Centers	12
R&D (of sales)	4.6%
Production units	89
Application Centers	30
Investments (of sales)	5.7%
Employees	40,418
Magneti Marelli Powertrain Worldwide Presence

Sales 2015 919 mio €
R&D Centers 4
R&D* 5.7%
Employees worldwide 5,293

Production units 15
Application Centers 9
Investments* 13.7%

* % of “make” sales
Customer Brand Portfolio

[Diagram showing various brand logos around the world]
Magneti Marelli Powertrain – Diesel Systems

CONTROL SYSTEMS
- ECU
- Controls & SW
- Engine Management Calibration
- Combustion Models & Spray targeting

SENSORS
- Smart Sensors

Hybrid Impulsion
- Motor-Generator
- Power Inverter

Transmission
- AMT
- DCT

Components for SCR/SCRoF System

ACTUATORS
- Throttle Body
- VGT Actuator
- Intake man. w var. Swirl Actuator
Emission Standard trend

- Euro1, Euro2, Euro3, Euro4, Euro5, Euro6b, Euro6d
- Stage I, Stage II, Stage III, Stage IV, Stage V

Other main legislation:
- Japan
- India
- Brazil
- China

Other main requirements:
- On Board Diagnostic Requirement (OBD II, EOBD)
- Fuel consumption, CO2 Reduction

Pollutant limit:
- CO, NOx, NH3, PM, SO2, Pb

PC, LDT, LCV, NRMM, HD

- Tier 0, Tier 1, Tier 2, Tier 3, Tier 4
- LEV I, LEV II, LEV III

years
Technologies for reaching the target

Two main ways for NOx reduction on Diesel Engine

- NOx Engine Out reduction → Combustion improvement (e.g. EGR HP, EGR LP)
- After-treatment technologies (e.g. LNT, SCR, SCRonF) could be combine for reach the target

O2 Virtual Sensor

NOx Virtual Sensor
Intake O2 and NOx Virtual Sensors

- Engine parameters: rpm, SOI, AFM, m fuel
- NOx Virtual Sensor
- Intake O2
- Intake O2 estimation
- Adaptive control
- Combustion Management – EGR Control Management

Partnership with University of Salerno
Intake O2 Virtual Sensor

Purpose of intake O2 measure:

- Estimation of effective EGR ratio (e.g. EGR Valve Control Management)
- Enhancement of conventional and advanced combustion control (PCCI, HCCI, LTC)
- Improvement of NOx prediction during engine transients, suitable for both dynamic adjustments of EMS strategies and management of after-treatment devices.
MEAN VALUE MODEL

- Filling and Emptying for intake/Exhaust manifolds
- Mass and energy conservation in any control volume
- Homogeneous pressure, temperature and chemical composition in the intake manifold
- Instantaneous and perfect mixing of incoming flows
- No heat transfer through manifold walls

- Low computational demand and identification issues
- Suitable for on-board implementation
- Model accuracy fully satisfactory
Mean Value model Main equation

Oxygen mass fraction in the intake manifold

\[
\dot{O}_{2,\text{man}} = \frac{R_{\text{air}} T_{\text{man}}}{P_{\text{man}} V_{\text{man}}} \left[(O_{2,\text{exh}} - O_{2,\text{man}}) \dot{m}_{\text{egr}} + (O_{2,\text{amb}} - O_{2,\text{man}}) \dot{m}_{\text{air}} \right]
\]

Intake manifold temperature

\[
T_{\text{man}} = \frac{R_{\text{air}} T_{\text{amb}}}{P_{\text{man}} V_{\text{man}}} \left[(k_{\text{air}} T_{\text{egr}} - T_{\text{man}}) \dot{m}_{\text{egr}} + (k_{\text{air}} T_{\text{ic,out}} - T_{\text{man}}) \dot{m}_{\text{egr}} - (k_{\text{air}} - 1) T_{\text{man}} \dot{m}_{\text{cyl,in}} \right]
\]

Prediction of Exhaust O\textsubscript{2} concentration in place of UEGO measurement

\[
\dot{O}_{2,\text{exh}} = \frac{R_{\text{exh}} T_{\text{exh}}}{P_{\text{exh}} V_{\text{exh}}} \left[(O_{2,\text{cyl,out}} - O_{2,\text{exh}}) \dot{m}_{\text{cyl,out}} \right]
\]

\[
O_{2,\text{cyl,out}} = \frac{\dot{m}_{\text{cyl,in}} O_{2,\text{man}} - \alpha_{\text{st}} \dot{m}_f O_{2,\text{man}}}{\dot{m}_{\text{cyl,in}} + \dot{m}_f}
\]
O2 Experimental results

Common-Rail Diesel 1.3 – EGR/HP - VGT

*O2 intake measured with O2 sensor
Common-Rail Diesel 2.3 – EGR/HP - VGT

<table>
<thead>
<tr>
<th>Engine Key characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power and Max. Torque</td>
</tr>
<tr>
<td>150Hp and 320Nm</td>
</tr>
<tr>
<td>Cylinders</td>
</tr>
<tr>
<td>4 in line</td>
</tr>
<tr>
<td>Displacement</td>
</tr>
<tr>
<td>2286 cm³</td>
</tr>
<tr>
<td>Valves per cylinder</td>
</tr>
<tr>
<td>4 (DOHC)</td>
</tr>
<tr>
<td>Combustion System</td>
</tr>
<tr>
<td>Diesel Direct Injection</td>
</tr>
<tr>
<td>Compression Ratio</td>
</tr>
<tr>
<td>19:1</td>
</tr>
<tr>
<td>Synchronisation system</td>
</tr>
<tr>
<td>• Crankshaft position sensor</td>
</tr>
<tr>
<td>• Camshaft position sensor</td>
</tr>
<tr>
<td>Fuel Injection System</td>
</tr>
<tr>
<td>Common Rail Solenoid Injectors (160 MPa)</td>
</tr>
<tr>
<td>Intake Air System</td>
</tr>
<tr>
<td>• Electrical Throttle Body actuator</td>
</tr>
<tr>
<td>• Intake manifold pressure and temperature sensor</td>
</tr>
<tr>
<td>Turbo charging System</td>
</tr>
<tr>
<td>VGT turbocharger, vacuum controlled with vacuum electro-modulator with VGT position sensor</td>
</tr>
<tr>
<td>EGR System</td>
</tr>
<tr>
<td>• DC-Motor EGR valve + position feedback</td>
</tr>
<tr>
<td>• Air Flow Meter, before Turbo-Compressor</td>
</tr>
<tr>
<td>Exhaust Gas System</td>
</tr>
<tr>
<td>• 1 linear oxygen sensor (UHEGO) in the exhaust pipe, downstream of turbine just before catalyst</td>
</tr>
<tr>
<td>After-treatment System</td>
</tr>
<tr>
<td>• Oxidant Catalyst + Diesel Particulate Filter (coated soot filter, without additive), close-coupled</td>
</tr>
<tr>
<td>• DPF Differential pressure sensor</td>
</tr>
<tr>
<td>• DPF inlet temperature sensor</td>
</tr>
</tbody>
</table>

O2 Experimental results

Jun 27th, 2016
NOx Virtual Sensor

Purpose:
- After-Treatment Device Management (LNT, SCR, SCRoF, etc.)
- Diagnosis After-treatment system:
 - NOx Sensor diagnosis: plausibility check & functional diagnosis
Neural Network:
- Black Box Model
- Basic elements (neurons) are combined together with connections and are placed in different layers depending on the architecture
- Right inputs are fundamental for good result
- The training and validation phases are important to make more or less strong connections
- A lot of NN parameters impact the final result: number of neurons, number of layers, NN architecture, training algorithm, epoch of training, initial conditions, etc.

Recurrent Neural Network:
- The current output also depends on the previous outputs

\[
 y (t, \theta) = F \begin{bmatrix}
 y(t-1, \theta), \ldots, y(t-i, \theta), \\
 x_1(t), \ldots, x_1(t-j+1), \\
 x_2(t), \ldots, x_2(t-j+1), \\
 x_3(t), \ldots, x_3(t-j+1)
\end{bmatrix}
\]
Recurrent Neural Network training

Recurrent Neural Network

• Delay compensation from measured data

• RNN identification/ training:
 ▪ Parametric analysis and selection of the most suitable neural network structure;
 ▪ Deterministic analysis to set RNN weights initial conditions;
 ▪ RNN Pruning by means of the Optimal Brain Surgeon (OBS) algorithm.

RNN main parameters:

• N. of Layers: 3
• N. of neurons in hidden layer: 18
• N. of epoch: 80
• Lag input space: 2
• Lag output space: 2
NOx Experimental Result

Common-Rail Diesel 1.3 – EGR/HP - VGT

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>R2</th>
<th>ERR.INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEDC</td>
<td>16,14</td>
<td>0,9746</td>
<td>0,0909</td>
</tr>
<tr>
<td>TEST</td>
<td>90,21</td>
<td>0,9756</td>
<td>0,1707</td>
</tr>
</tbody>
</table>

*NOx Engine Out measured with NOx production sensor
Recursive Least Square based Adaptation

Off/On-line parameters update (adaptivity)
- Implementation of RLS methods.
- Development of methods for neural network.

- Adaptness based on gain/offset parameter already implemented. → Low CPU load
- RNN re-training procedure → more powerful but high CPU load
Recursive Least Square based Adaptation

NOx measured, plus imposed drift of -30%.
Conclusion

• Emissions standard trend requests strict pollutant limit
• Engine Management System and after-treatment will be more complex and more expensive and Virtual Sensors represent a good opportunity
• O2 intake estimation with model based approach gives good result and could be implemented on ECU for real-time estimation
• NOx engine out estimation with Recurrent Neural Network also present good results with benefits on calibration effort
• Parameters update (adaptivity) is implemented with good result recovering the system dispersion
Thank You
Backup