

The SCRF® Concept – A Competitive Johnson Matthey Approach to Off-road Emission Challenges

Reza Torbati SAENA Workshop 2016

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

EMISSION CONTROL TECHNOLOGIES

Confidential

- Introduction of global legislation and market trends
- Development and technical drivers for SCRF®
- Technical features & challenges for SCRF® application
- System comparison SCRT[®] vs SCRF[®]
- Substrate definition affects SCRF[®] performance
- Impact of ash loading on SCRF[®] performance

Overview of HDD Legislative Roadmap

Further Tightening of Heavy Duty Regulation

On Road	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
Europe	EU VI						EU VII?					
North America	GHG Phase 1						GHG Phase 2					
North America (CARB)	GHG Phase 1						GHG Phase 2 and CARB Ultra Low NOx					
Japan	JP09					JP16						
South Korea	EU VI							EU VII?				
Brazil	EU V						EU VI?					
Russia	EU V?			EU V?				EU VI?				
India (Main Cities)	EL	JIV	EU V?				EU VI?					
India (Nationwide)	EU	III -		EU IV			EU VI?					
China (Beijing)	EU IV							EU VI				
China (Nationwide)	EU IV				EU V			EU VI				
Non-road												
Europe	Tier 4b					Stage V						
North America	Tier 4b					CARB/EPA Reduced NOx/PM?						
Japan	Tier 4b											
South Korea	Tier 4b						Stage V?					

BrazilTier 3China (Beijing)Tier 3China (Nationwide)Tier 3

Tier 4b?

Tier 4b?

Tier 4b?

Tier 4a?

Tier 4a

Incoming Europe and North America Regulations HDD Emission Control Legislative Roadmap

Europe North America North America (CARB) Japan South Korea Brazil Russia India (Main Cities) India (Nationwide) China (Beijing) China (Nationwide)

Non-road

On Road

Europe North America Japan South Korea Brazil China (Beijing) China (Nationwide)

Optimised systems with improved NOx conversion and low temperature performance

China / India EUVI Adds Filters HDD Emission Control Legislative Roadmap

Transition from SCR to SCRT systems increases system complexity

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions Confidential testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

4

EU Non Road Stage V Mandates Filters via PN Regulation HDD Emission Control Legislative Roadmap

2020 2022 2015 2016 2017 2018 2019 2021 2023 2024 2025 **On Road** Europe **North America** North America (CARB) Japan South Korea SCR/ASC SCRF[®] DOC Brazil Russia India (Main Cities) India (Nationwide) China (Beijing) China (Nationwide) **Urea** injection Non-road **Stage IV** Stage V Europe North America Japan South Korea Brazil China (Beijing) • EU Stage V: Filters and SCR on all HDD Non Road Mobile Machinery China (Nationwide)

Transition to SCRT and SCRF systems increases requirements for installation and control strategies

China Non-road Regulations Require Emission Control

Introduction of emission control technology will enhance use of established knowledge

Confidential

- PN introduction for Stage V is now filter forcing for ATS
- Space limation on non-road vehicles make SCRF an attractive option

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Technical Drivers for SCRF®

- Reduced system volume
 - More compact
 - Less space on vehicle
 - Muffler cost

- Faster heat-up of SCR coating
 - Cold start advantages
 - Improved low temperature performance
- Higher NOx conv. per unit system volume

Technical features & challenges SCRF® application

HDD SCRF[®] Product Optimization

Finding the right balance between system functions

Confidential

SCRT[®] vs SCRF[®] System Comparison WHTC NOx conversion, ageing at 700°C/100h

Confidential

Influence of Urea Dosing on Passive Soot Regeneration NO2/NOx ~ 40%, at 400°C, 8g/l soot

Rate of soot oxidation drops with urea injection - NO₂ reacts preferentially via fast SCR reaction

NO₂ NH₃ SCR reaction FAST

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions Confidential testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation. 12

JM 🛠

Tailpipe PN Emissions

PN measured with urea injection

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Substrate definition affects SCRF® performance

Effect of cell density & porosity with soot & ash loading

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Substrate definition affects SCRF® performance

Effect of cell geometry on soot loaded backpressure

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

Accelerated Ash Loading Study on Cu-SCRF®

High ash oil loading during 350 hrs of operation

Urea Doc SCRF System was actively regenerated periodically at high temperatures to avoid soot build-up and form ash

The data included herein were collected in a Johnson Matthey laboratory which has not been certified by the relevant authorities/agencies to perform emissions testing. These are indicative data and do not represent a guarantee that the tested catalyst or emissions system will pass the relevant emissions legislation.

NRTC NOx conversion during ash loading

Confidential

Ash loading and Cleaning Study of Cu-SCRF®

Activity & BP before/after ash loading and after ash cleaning

Confidential

Summary

- System comparison tests have shown that SCRF[®] can be an alternative to SCRT[®] but at lower overall system volume which helps packaging and on vehicle installation
- Cell geometry optimisation and high porosity filters are enabling increased performance with low backpressure.
- SCRF® performance is dependent on catalyst washcoat optimization and substrate characteristics
- Competition for NO₂ between soot and SCR reactions can be managed with appropriate SCRF[®] system design
- PN regulation and backpressure targets are met via optimised substrate cell density, porosity and catalyst washcoat technologies
- Study on ash loading and cleaning shows:
 - Ash accumulation does not have a significant effect on NOx conversion
 - Cu-SCRF[®] components can be cleaned, resulting in no loss in activity

