Nanoparticle emissions from an off-road Diesel engine equipped with a catalyzed diesel particulate filter

S. Di Iorio, A. Magno, E. Mancaruso, B. M. Vaglieco

Istituto Motori, Naples Italy

Main concerns on transportation

PN regulation

6.0×10¹¹ 1/km of particles larger than 23 nm

In-cylinder: Particle Formation

Exhaust: Particle Emissions

Chemical Information

PM emissions reduction: DPF

Monolithic structure *honeycomb* of porous ceramic material with high mechanical and thermal strength (cordierite, carbide silicon, SiC) or metal sintered.

The cells are closed either by a side and the other in order to filter continuous gas discharge retain the particles

Particles<23nm

Engine	Compression Ignition			
Number of Cylinders	3, in-line			
Bore [mm]	75.0			
Stroke [mm]	77.6			
Displacement [cm ³]	1028			
Compression Ratio	17.5:1			
Max. Power [kW]	15 @ 3600 rpm			
Max. Torque [Nm]	60 @ 2000 rpm			
Injection System	Direct, Common Rail			
Max injection pressure [bar]	1400			
Aspiration	Naturally Aspirated			

TEST ENGINE

Temperature & pressure downstream DFP

Engine	Compression Ignition			
Number of Cylinders	3, in-line			
Bore [mm]	75.0			
Stroke [mm]	77.6			
Displacement [cm ³]	1028			
Compression Ratio	17.5:1			
Max. Power [kW]	15 @ 3600 rpm			
Max. Torque [Nm]	60 @ 2000 rpm			
Injection System	Direct, Common Rail			
Max injection pressure [bar]	1400			
Aspiration	Naturally Aspirated			

Temperature & pressure upstream DFP

EXPERIMENTAL LAYOUT

10. SMPS

Air flow meter

5. **Fuel balance**

Operating conditions

1600 rpm

3200 rpm

Speed	Т _ь	SOI _{pilot}	DOI _{pilot}	SOI _{main}	DOI _{main}	P _{inj}	m _{diesel}	m _{air}	T _{up DPF}	T _{down DPF}
[rpm]	[Nm]	[cad]	[µs]	[cad]	[µs]	[bar]	[kg/h]	[kg/h]	[°C]	[°C]
1600	36	-10.4	354	2.4	479	758	1.51	39.8	290	278
2800	35	-22.2	321	-4.4	464	923	2.59	82.3	349	315
3200	33	-33	344	-10.4	510	1045	2.90	101.5	363	310

PM: Up vs Dwn DPF

PM: Up vs Down DPF

PSDF: Up vs Down DPF

PM emissions reduction: DPF

Monolithic structure *honeycomb* of porous ceramic material with high mechanical and thermal strength (cordierite, carbide silicon, SiC) or metal sintered.

The cells are closed either by a side and the other in order to filter continuous gas discharge retain the particles

Increase of soot cake: Backpressure increases

Filtration efficiency increases

Engine efficiency decreases

Fuel consumption (CO₂) increases

DPF: Regeneration

Particle Oxidation

Soot oxidation temperature is lowered for autoregeneration.

Oxidation catalyst are added to the system to promote oxidation:

-Oxygen -Nitrogen dioxide

DPF: Passive Regeneration

 $NO+1/2 O_2 \longrightarrow NO_2$ $2NO_2 + 2C \longrightarrow N_2 + 2CO_2$

250°C @ NO₂

Catalyst are on the filter surface

400°C @ O2

DPF: Regeneration

Particle Oxidation

Passive

Soot oxidation temperature is lowered for autoregeneration.

Oxidation catalyst are added to the system to promote oxidation:

-Oxygen -Nitrogen dioxide The temperature was increased by the use of an outside energy source

DPF: Active Regeneration

Fuel Injection

oxidized over an oxidation catalyst

Fuel is burned in a fuel burner

DPF: Active Regeneration

Engine Management

Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies, C. Beatrice, S. Di Iorio, C. Guido, P. Napolitano, Experimental Thermal and Fluid Science 39, 45-53.

Engine Layout

Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies, C. Beatrice, S. Di Iorio, C. Guido, P. Napolitano, Experimental Thermal and Fluid Science 39, 45-53.

Exhaust Layout

Micro Soot Sensor

Differential Mobility Spectrometer

Injection Calibration

PM Emissions

PN Emissions

Particle Chemical Properties

Conclusions (1/2)

The filtration efficiency of DPF was investigated on an engine representative of an off-road Diesel engine.

The investigation was carried out at urban driving conditions where regeneration typically does not occur.

The mass concentration, the number and the size were measured both upstream and downstream the DPF.

The size range: 3–64 nm was investigated .

PM filtration efficiency is higher than 90%. PN filtration efficiency decreases with the particle size.

Conclusions (2/2)

The regeneration of DPF was investigated on an engine representative of a light duty Diesel engine.

The investigation was carried out at typical driving conditions where regeneration occurs.

The mass concentration, the number and the size were measured downstream the DPF.

It was investigated the size range: 5–1000 nm.

PM and PN increase as the regeneration goes on.

Larger number of particles smaller than 23 nm was emitted during the regeneration process.

The organic and carbonaceous component of the particles varies during the regeneration process.

Thank you for the attention

Nanoparticle emissions from an off-road Diesel engine equipped with a catalyzed diesel particulate filter

S. Di Iorio, A. Magno, E. Mancaruso, B. M. Vaglieco

Istituto Motori, Naples Italy