

Challenges and opportunities for stage V NRMM

Andrea Trevisan Chief Engineer, Heavy Duty Engines Ricardo UK Ltd SAE NAPLES Conference Aftertreatment System for Diesel Engines 27th – 28th June 2016, Reggio Emilia, Italy

Delivering Excellence Through Innovation & Technology

www.ricardo.com

© Ricardo plc 2016

Contents

- Stage V legislation
- Technology road map for Stage V
- Ricardo clean combustion system
- Conclusion

Contents

• Stage V legislation

- Technology road map for Stage V
- Ricardo clean combustion system
- Conclusion

Off-highway emissions legislation overview

- Stage V regulations announced in Europe from 2018
- No emissions standard beyond Tier 4 Final has been anticipated yet in the US
- Japan has a self-regulating, voluntary emissions legislation <19 kW but an obligatory legislation >19 kW which roughly aligns with the EU and USA current emissions limits

Source: Ricardo EMLEG

SAE NAPLES Conference

Stage V emission regulation

Europe – Current and Proposed Future Emission Limits

19 ≤ P < 560 kW

Emission Regulation	Implementation Year	Power Range [kW]	CO [g/kWh]	HC [g/kWh]	NOx [g/kWh]	NOx + HC [g/kWh]	PM [g/kWh]	PN [#/kWh]	Off-cycle / In use compliance
Stage IV	>2013	130 ≤ P < 560	3.5	0.19	0.4	-	0.025	-	NTE
Stage IV	>2013	56 ≤ P < 130	5.0	0.19	0.4	-	0.025	-	NTE
Stage IIIA/B	>2012	37 ≤ P < 56	5.0	-	-	4.7	0.025	-	-
Stage V	>2018	130 ≤ P < 560	3.5	0.19	0.4	-	0.015	1x10 ¹²	NTE/PEMS
Stage V	>2019	56 ≤ P < 130	5.0	0.19	0.4	-	0.015	1x10 ¹²	NTE/PEMS
Stage V	>2018	19 ≤ P < 56	5.0	-	-	4.7	0.015	1x10 ¹²	NTE/PEMS

• Stage V new emission limits and test requirement:

- PM limits have been reduced from 0.025 to 0.015 g/kWh in the power range 19 to 560 kW
- Particle Number limits is introduced to mandate the DPF usage
- PEMS test is introduced

Source: Ricardo EMLEG

SAE NAPLES Conference

Contents

• Stage V legislation

• Technology road map for Stage V

- Ricardo clean combustion system
- Conclusion

Legislation is one of the market drivers, those are around legislation and policy, business demands and customer expectations all influence future product solutions

Market Drivers

Technology road map for Stage V

Solutions for the Stage V emission legislation need to consider the implications on product cost, reliability, total cost of ownership, productivity, brand image to mention few of the more important drivers

Market Drivers

Typical Stage IV Solutions for 56-560 kW engines SCR is commonly adopted and the state of art engines do not use DPF and DOC

 Low soot combustion means: 6 to 9 mg/kWh Engine Out soot on cycle

Potential Stage V Solutions for 56-560 kW engines A DPF is included in the technology package to meet the PM and PN limit

Technology road map for Stage V

Potential Stage V Solutions for 56-560 kW engines Systems comparison

technology	Low soot combustion, No EGR, High Eff SCR	Low soot combustion, low EGR, High Eff SCR	Conventional combustion, high EGR, High Eff SCR	A Low Soot Combustion System \bigcirc No EGR DPF SCR $\eta \ge 96\%$ B	Low Soot Combustion System Common Rail (<1800 bar)	WGT EGR	DOC + passive DPF SCR + ASC (η ≥ 96%)	Thermal Management
EGR				Low Soot Combustion System 10-20% EGR			- 🂓 - 🐝	- *
SCR or SCRF	_			DPF SCR η≥94%	Low Soot Combustion System	WG-VGT Cooled EGR (10-20% EGR rate	DOC + SCR + ASC passive DPF (η ≥ 94%)	Thermal Management
DPF regeneration type	_			C Traditional		Ma I -		
BSFC				Combustion System > 20% EGR DPF	Traditional		D 🂓 O 💓	
AdBlue consumption				SCR $\eta \ge 92\%$	Combustion Common Rail System (>2000 bar)	VGT Cooled EGR (>20% EGR rate)	DOC + SCR + ASC) active DPF (η ≥ 92%)	
Total cost of fluid								
Development effort								
First cost								
Total cost ownership								
Turbo tech. demand								
Vehicle cooling								
Thermal mgnt effort								
Reliability								
Packaging								

technology

DPF regeneration type

AdBlue consumption

Development effort

Total cost ownership

Turbo tech. demand

Thermal mgnt effort

Vehicle cooling

Reliability

Packaging

Total cost of fluid

EGR

BSFC

First cost

SCR or SCRF

Potential Stage V Solutions for 56-560 kW engines Systems comparison

Low soot

combustion,

low EGR, High

Eff SCR

≤ 20%

eff ≥ 94%

passive

Low soot

combustion,

No EGR, High

Eff SCR

no

eff ≥ 96%

passive

Conventional

combustion,

high EGR, High

Eff SCR

- Clan low soot combustion systems Option A and B use a smaller and passive DPF with better total cost of fluid and lower product cost
 - SCRF can be used thanks to the high NOx/Soot ratio and the mainly passive regeneration with reduced risk of thermal deactivation
- SCR (and DPF) **thermal management** using intake or exhaust flap is required on option A and B with some fuel consumption penalty
- No EGR solution allow the lower **base engine cost**

Potential Stage V Solutions for 56-560 kW engines Systems comparison

technology	Low soot combustion, No EGR, High Eff SCR	Low soot combustion, low EGR, High Eff SCR	Conventional combustion, high EGR, High Eff SCR	
EGR	no	≤ 20%	> 20%	
SCR or SCRF	eff ≥ 96%	eff ≥ 94%	eff ≥ 92%	
DPF regeneration type	passive	passive	active	
BSFC				
AdBlue consumption				
Total cost of fluid				
Development effort				
First cost				
Total cost ownership				
Turbo tech. demand				
Vehicle cooling				
Thermal mgnt effort				
Reliability				
Packaging				

- Clan low soot combustion systems Option A and B use a smaller and **passive DPF** with better total cost of fluid and lower product cost
 - SCRF can be used thanks to the high NOx/Soot ratio and the mainly passive regeneration with reduced risk of thermal deactivation
- SCR (and DPF) **thermal management** using intake or exhaust flap is required on option A and B with some fuel consumption penalty
- No EGR solution allow the lower **base engine cost**
- Conventional combustion system is not recommended: high engine out soot require active DPF with impact on fuel consumption, reliability, higher turbocharger cost, vehicle cooling

SCRF aftertreatment is an option for high NOx and low soot engine out engines

Cons DOC + SCRF Pros 0 Fast light off for SCR NO₂ competing reactions with NH_3 and carbon 0 Low and mid temperature NOx NOx ΔP Urea NO_x control Control challenge for mixer multiple SCR bricks 0 Packaging DOC SCRF SCR/ASC Dedicated ASC brick if 0 Cost second SCR not required **Urea Injector** Ash impact/service interval Not suitable for high soot emitting engines DOC + DPF + SCR Pros Cons Ο Enhanced passive soot Low temperature / real oxidation world NOx control NOx NOx challenge Urea 0 ASC coated on back of mixer SCR brick Packaging DOC DPF SCR/ASC **Urea Injector**

Comparison of aftertreatment options for Stage V 56-560 kW engines

Typical Stage III B Solutions for 37-56 kW engines SCR is not required and the state of art engines do not use a DPF

- The three Technology Options presented above represent the majority of Stage III B 37-56 kW diesel engines available today
- Other variations and combinations of these three options are also available.
- A few basic engines in this power category still have mechanical FIE with alone DPF systems

Technology road map for Stage V

Potential Stage V Solutions for 37-56 kW engines All Stage V solutions are expected to have a DPF

Potential Stage V Solutions for 37-56 kW engines Systems comparison

	Low soot	Conventional		a Low Soot Combustion System <15% EGR DPF	Low Soot Combustion System	on Rail 000 bar) WGT	Cooled EGR (~15% EGR rate)	Doc	DPF	Thermal Managemen
technology	combustion, low EGR	combustion, high EGR	No EGR	D Traditional Combustion System 15-20% EGR DPF	Traditional Combustion		Cooled EGR	DOC	DPF	
EGR				C	System (1200-1	600 bar)	(15-20% EGR rate)			
SCR or SCRF				Traditional Combustion System		n o 4	r 🚫 o	100	-	
DPF regeneration type				DPF	Traditional Combustion System	on Rail 600 bar) WGT	EGR	DOC	DPF	
BSFC					-,					
Development effort										
first cost										
Total cost ownership										
Turbo tech. demand										
Vehicle cooling										
Thermal mgnt effort										
Reliability										
Packaging										

Potential Stage V Solutions for 37-56 kW engines Systems comparison

technology	Low soot combustion, low EGR	Conventional combustion, high EGR	No E
EGR	up to 20%	> 20%	L
SCR or SCRF	no	no	
DPF regeneration type	passive	active	
BSFC			
Development effort			
first cost			
Total cost ownership			
Turbo tech. demand			
Vehicle cooling			
Thermal mgnt effort			
Reliability			
Packaging			

- Low soot combustion system allow a smaller **passive DPF** with benefit on
 - Fuel consumption
 - Machine reliability
 - Development cost

Potential Stage V Solutions for 37-56 kW engines Systems comparison

technology	Low soot combustion, low EGR	Conventional combustion, high EGR	No EGR	
EGR	up to 20%	> 20%	no	
SCR or SCRF	no	no	no	
DPF regeneration type	passive	active	active	
BSFC				
Development effort				
first cost				
Total cost ownership				
Turbo tech. demand				
Vehicle cooling				
Thermal mgnt effort				
Reliability				
Packaging				

- Low soot combustion system allow a smaller **passive DPF** with benefit on
 - Fuel consumption
 - Machine reliability
 - Development cost
- A no EGR solution is possible with highly retarded timing and impact on fuel consumption and possible machine reliability

Contents

- Stage V legislation
- Technology road map for Stage V
- Ricardo clean combustion system
- Conclusion

Clean and Efficient Combustion Ricardo Twin Vortex Combustion System (TVCS)

TVCS is a low soot combustion system patented by Ricardo It is a special combination of combustion bowl, air and fuel motion to manage the air/fuel mixture into a more homogeneous distribution with lower soot:

- Split of the fuel spray with generation of two vortices
 - \rightarrow Better mixing vs. conventional bowl
 - \rightarrow No risk of overspray
- Faster decay of rich mixture & quicker soot oxidation process.

Clean and Efficient Combustion PM and BSFC trends

- Stage IV: TVCS simultaneously achieved lower PM and BSFC than conventional systems
- Stage V: DPF is mandatory. The engine out soot can afford marginal increase, to gain even better BSFC

SAE NAPLES Conference

Ricardo TVCS is applied on the 2011, 2012, 2015 engines of the year....what next?

Ricardo is developing the next generation of TVCS Full Load Analysis, Compression Ratio sweep 16 to 23:1 on a 13L HDD

• Sweeps of compression ratio have been run maintaining constant max cylinder pressure (Pmax) by adjusting injection timing

Ricardo is developing the next generation of TVCS Full Load Analysis 1200rpm, Compression Ratio sweep 16 to 23:1 on a 13L HDD

Pmax

CR

Ricardo is developing the next generation of TVCS Full Load Analysis 1200rpm, Compression Ratio sweep 16 to 23:1 on a 13L HDD

- Sweeps of compression ratio have been run maintaining constant max cylinder pressure (Pmax) by adjusting injection timing
- Increasing Pmax increases brake thermal efficiency, but also NOx
 - Increasing CR at the same time maintains higher efficiency but gives lower NOx
 - NOx can be fully compensated by increasing EGR whilst still giving high efficiency (dotted red line)

Miller valve timing (early intake valve closing) and 2 Stage Turbocharging allow further fuel consumption benefit

 Results for 2 stage turbocharging models with Miller valve timing have been compared to the single stage VGT, 250 bar Pmax engine model

Miller valve timing (early intake valve closing) and 2 Stage Turbocharging allow further fuel consumption benefit

 Results for 2 stage turbocharging models with Miller valve timing have been compared to the single stage VGT, 250 bar Pmax engine model

Miller valve timing (early intake valve closing) and 2 Stage Turbocharging allow further fuel consumption benefit

- Results for 2 stage turbocharging models with Miller valve timing have been compared to the single stage VGT, 250 bar Pmax engine model
- For the 250 bar engine variant, switching to twin-stage and alternative valve timing gives BSFC benefits at all CRs. reaching a minimum of 176.9 g/kWh (b269)
- Further BSFC reduction (176.2 g/kWh - 0.4%) can be achieved by running no EGR (b270)

24

21

22

23

Contents

- Stage V legislation
- Technology road map for Stage V
- Ricardo clean combustion system
- Conclusion

Conclusion

- Stage V regulation nearly finalized with focus on PM, PN and in use emission compliance
- Several technology options available to meet Stage V: with or without EGR, active or passive DPF, DPF plus SCR or SCRF:
 - A clean combustion system is key to achieve passive DPF/SCRF regeneration with benefit on product cost (small DPF, no active regen devices), machine reliability and productivity
- Further engine efficiency improvement is under development at Ricardo, including increased Pmax and Compression ratio and with advance turbocharging and valve timing

