

The Engine Imperative

Fabien Redon, EVP and CTO

Achates Power

achates POWER Fundamentally Better Enginese

Minimum 3 Billion More IC Engines Built by 2050

Even with more rapid EV deployment – assume 80% by 2050 – 3 billion more internal combustion vehicles will be sold by 2050 globally

 If EV sales do not grow as projected, even more engines will be sold → better engines are essential for sustainable global transportation needs

Declining Industry Investments in ICE

Unprecedented industry optionality is starving IC Engine development

- Alternative funding sources needed to offset capital shift
- Better ICE engines will be needed
- Time to double up and get ready to support vehicle manufacturers when their focus shifts back

Automotive Engineering Magazine, April 2019

Cradle-to-Grave CO2: ICE based vehicles are competitive

*minus biogenic CO2 in Fuels

** Based on Achates Power 50% better fuel efficiency data relative to gasoline engines

aramco

Achates Power, Inc.

Who we are	How we do it		Why we do it
Develop enabling technologies for low CO ₂ and low emissions Opposed-Piston Engines	Partner with strategic co-develop engir manufactur	Partner with strategic industry members to co-develop engine solutions – not manufacture ourselves	
Achates Power, Inc.	Joint Deve Achates Powe	Joint Development Achates Power + Customer	
Enabling Technology Development	Power Train Integration and System Validation	Vehicle Integration	Business Integration
achates powers			

Achates Power Opposed-Piston Engines

OP Engine Technical Challenges - Addressed

Reduced Heat Losses

Earlier & Faster Combustion

Crank Angle (deg aMV)

- Larger cylinder volume for a given fuel quantity
- Double volume change rate for OP
- At similar pressure rise rate, OP has a higher rate of heat release and shorter combustion duration
- Shorter combustion and lower heat transfer results in a more advanced combustion phasing

High Turbulence Combustion

- OP provides the flexibility to use both pistons to form the combustion chamber
- API proprietary combustion system design provides high mixing
- Combines swirl and tumble
- Dual injectors spray patterns resulting in less fuel-to-wall impingement
- Further reduction in heat loss because of higher wall temperatures from pistons

Flexible and Efficient Charging System

Opposed-Piston Engine Architecture Advantages

Opposed-Piston Architecture

- → Reduced part count and lower manufacturing requirement
- Intake and exhaust ports opened/closed by piston location; no complex valve hardware
- Cranks, rods, pistons and gears are the only moving parts
- Base engine part count is 30% of an equivalent 4-stroke engine
- \rightarrow Potential for lower engine cost

Technologies for Efficiency and Emissions Improvements

Not Applicable

Cylinder de-activation/Variable displacement for higher low load efficiency

Miller or Atkinson cycle for higher efficiency

Similar Benefits

Thermal barrier coatings for lower heat losses Higher injection pressure for higher power and lower emissions FEAD elimination/Electric accessories and pumps Waste heat recovery

Inherent

Higher stroke to bore for reduced heat loss for higher efficiency

Faster combustion for higher thermal efficiency

Variable cam phasing/lift for higher efficiency and catalyst light-off

Cylinder de-activation/Variable displacement for exhaust gas temperatures control

Greater Benefits

Improved combustion for higher efficiency and emissions

Variable compression ratio for higher power output and higher efficiency

GCI/SPCCI for higher efficiency

Improved turbo chargers for higher efficiency and power

E-turbos for faster transient response and further downsizing

EGR pump for higher efficiency and lower emissions

Lower friction technologies for higher efficiency

Down speeding for higher cycle efficiency

Start/Stop for higher cycle efficiency

Reduced exhaust backpressure for higher efficiency

Variable pressure oil pump

Hybridization for higher cycle efficiency

Applicability to the OP engine

Present Range of Applications

Present Range of Applications

Opposed-Piston Gasoline Compression Ignition

- \$9 Million ARPA-e grant
- With Argonne National Labs & Delphi Technologies
- GCI, 2.7L, 3-cylinder engine, Bin 125 emissions with Lean AT
- Fits in Ford F-150

Test cell and Air System Set-up

10 Modes and Performance Curves

F150 Ecoboost 2.7L 2015 Vs. OPGCI

Partial map: OPGCI Engine 12 ECL measured

Partial map: 2015 Ford Ecoboost 2.7-Liter (SIDI Twin turbo) (US EPA measurement)

Vehicle fuel economy comparison (Gasoline E0 Equivalent)

*Adjusted from 2009 Nissan Titan results to compensate for vehicle weight reduction (5000lbs test weight), 10 speed transmission, integrated accessories and active aero using NAS adjustment factors. 70% Stop/Start

Vehicle fuel economy comparison (Diesel equivalent)

*Adjusted from 2009 Nissan Titan results to compensate for vehicle weight reduction (5000lbs test weight), 10 speed transmission, integrated accessories and active aero using NAS adjustment factors. Measured on gasoline compression ignition and adjusted for fuel density. 70% Stop/Start

Present Range of Applications

CARB Ultra-Low NOx Heavy Duty Demonstration

Superior Exhaust Gas Temperature and Emisions Management

Air system

- Air pumping decoupled from the engine cycle
- Independent intake and exhaust pressure control
- Inherent internal EGR
- Independent external EGR

Combustion system

- Uniflow scavenging
- Twin injector
- Proprietary combustion chamber design

Fast Catalyst Light-off and Low NO_x at Cold Start

- Baseline engine was unable to provide sustained exhaust heat (above 200°C) until 400 seconds into cycle.
 - NO_X reduction does not start until 550-600 seconds into the cycle
- Turbo-out temperature on the OP engine exceeded 200°C, within 40 seconds into the cycle, and remained above this light-off threshold for the entire cycle.
 - NO_X and HC conversion starts early (200s-300s) into the cold-start cycle
- No additional hardware required

Information on engine configurations:

Achates Power OP Engine SwRI Baseline Volvo 13L HD 2014 SwRI ULN Final Volvo 13L HD 2014 w. modified calibration

Patil, S., et al., "Cold Start HD FTP Test Results on Multi-Cylinder Opposed-Piston Engine Demonstrating Rapid Exhaust Enthalpy Rise to Achieve Ultra Low NOx," SAE Technical Paper 2018-01-1378, 2018, doi:10.4271/2018-01-1378. Considering optimization has not begun, best **break-in** point was recorded 186 g/kWh BSFC or 45.6% BTE.

HD OP Testing Update – Break-in results 2nd engine

Being installed in a Peterbilt truck

Present Range of Applications

Well Balanced In A Single Cylinder OP

Reduced Heat Transfer

Engine	4 stroke	OP
Cylinders	4	1
Trapped Volume/Cylinder	0.3 L	0.9 L
Bore (mm)	78	80
Stroke/Bore Ratio	1.0	<u>2.2</u>
Trapped Compression Ratio	17:1	17:1
Combustion Chamber Surface Area/Volume (mm ⁻¹)	0.611	<u>0.224</u>

Rule of Thumb:

The smaller displacement/cylinder, the more difficult to achieve high efficiency!

- Smaller displacement/volume results in high surface area/volume ratio, consequently higher heat transfer loss through the cylinder wall
- Flame quenching effect on the cylinder wall; difficult to achieve super lean burn

Larger cumulative heat loss from conventional engine

Cumulative heat loss from single large cylinder

Combustion chamber surface area to volume ratio reduced by **63%**

Highly-Efficient Opposed Piston Engine - Hybrids

DEPARTMENT OF ENERGY ANNOUNCES \$98 MILLION FOR 40 TRANSFORMATIVE ENERGY TECHNOLOGY PROJECTS November 15

November 15, 2018

ARPA-E's OPEN 2018 Program Selects Innovative Technologies to Advance Energy Security and Competitiveness

Transportation Energy Conversion

Achates Power, Inc. - San Diego, CA

Highly Efficient Opposed Piston Engine for Hybrid Vehicles ("HOPE-Hybrid") – \$2,000,000

Achates Power will develop an opposed-piston engine suitable for hybrid electric vehicle applications, using a unique engine design that minimizes energy losses typical in conventional internal combustion engines. A motor-generator integrated on each engine crankshaft will provide independent control to each piston and eliminate all torque transmitted across the mechanical crankshaft connection, thus reducing engine size, mass, cost, friction, and noise. The application of high-bandwidth power electronics will further improve engine efficiency through the real-time control of the piston motion and combustion process. If successful, the proposed technology will offer light- and heavy-duty vehicle manufacturers a cost-effective solution to improve vehicle fuel efficiency and reduce transportation carbon dioxide (CO₂) emissions.

- Push for lower CO₂ is the focus, and the right one
- But total life cycle impact has to be considered to make constructive policy and technology choices
- Transportation is not like cell-phones, it uses real energy and the laws of physics apply
- Even if electric vehicles achieve mass adoption, billions of internal combustion engines will be manufactured over the next decades

We (as a species; as an industry) have an obligation to make them as benign as possible. It can be done and must be done

This is "The Engine Imperative"

THANK YOU

The second

0

ntally

0

WE

0