

The Path to CO₂-neutral Mobility in 2050

Marc Sens, Emanuel Binder, Maximilian Brauer, Wolfgang Wukisiewitsch, Matthias Kratzsch IAV GmbH

Ralf Tröger, consulting4drive GmbH

SAE ICE 2019, Capri, September 16th, 2019

Stakeholder of Future Mobility

Ecosystems of Future Mobility

→ Specific mobility requirements will lead to an adapted mixture of powertrain configurations

Ecosystems of Future Mobility

Requirement	Urban	Suburban	Interurban	Rural
Form of mobility	Shared mobility; intermobility	Owned mobility; Inter- mobility at transition to urban area	Owned mobility (vs. train / plane)	Owned mobility
Sensitivity on costs	Ð	0	0	Ð
Cruising range demand	0	0	Ð	Ð
Importance local zero emission	••	0	0	0
Sensitivity on fill-up time	-	-		0
Availability of alternatives		0	0	•
Availability energy carrier	Ð	0	Ð	0

→ No particular powertrain technology will be able to meet all requirements of the different mobility ecosystems

Interaction of Energy- and Mobility Transition

Competition of Technologies – Well2Wheel Efficiency

*will vary and can be much lower, depending on heating & cooling of battery, storage of electricity, etc.

- \rightarrow Direct use of electricity as most efficient way where accepted by costumer
- \rightarrow Primary energy demand for PtL based mobility approx. 4-5 times higher than for BEV (WtW)
- → Efficiency of PtL can be increased if using process heat in production process (sector coupling energy prod. trans.)

Why to Continue the Development of Combustion Engines

- Combustion engines with e-Fuels 100% CO₂-neutral
- Internal combustion engines with e-Fuels would allow to reduce CO₂ in the existing fleet from today on (Drop In)
- High energy content small storage volumes, big traveling range
- Easier long-term storage; better transportability
- Lower investment in infrastructure
- Impact on CO₂ not just for new mobility concepts, but even for the existing fleet from today on (drop in capability of PtX)

- Development of technology bundles to increase ICE efficiency in interaction with the complete powertrain
- Measures to achieve local zero impact emission to enlarge area of application

\rightarrow Highly efficient combustion engines as precondition for future powertrains with ICE application

From ICE with Micro Hybrid to Dedicated Hybrid ICE

Mobility Synthesis as a new Approach for Scenario Assessment

Timeline for Development of Boundary Conditions

Additional Paths to Renewable Mobility (Well2Wheel Efficiency)

*) Will vary and can be much lower, depending on heating, cooling of battery, storage of electricity, etc.

Primary Energy Demand drives Engine Efficiency

 \rightarrow Target shifts from CO₂-Emission to 1^{ry} Energy Demand – forces ICE efficiency increase even more!

Energy Supply and Demand in Germany Today

Sources: FNR 2018, BMWi 2018/19, AGEB 2018 & 2019

¹) Equals to 12963 PJ (PJ usually used for primary energy)
²) Extractive and Manufacturing Industries ³) Latest available Data Set

 \rightarrow Today the energy demand for the road transport can not be fulfilled by Biomass and Bio-Waste

Energy Supply and Demand in Germany 2050

 \rightarrow Biomass already available as combustible for ICEs + enough available to supply ex-urban mobility

Shares of Biomass in Germany 2018 and in 2050

→ Biomass used for Sustainable Mobility shall not compete with the Food Supply!

Conversion Process of Biomass into Biomethane

\rightarrow The production of Biogas is very efficient and close to nature

Conclusions and Urgent Things to Do

Common target of individually adapted mobility at lowest climate impact

- Politics
- Energy industry
- Fuel supply chain
- Automotive industry

Sector coupling indispensable

- Power generation
- Conversion and storage
- Grid stabilization
- Infrastructure

Development of infrastructure on European scale

Definition of regulatory boundaries necessary in short term

- Taxation of PtX and electricity
- Incentives
- Balance frame for CO₂ taxation during transient phase
- Closing of gap of CO₂ suppression costs between automotive and industry

Generation of willingness for investment in infrastructure

• Concerted action of national and European regulation authorities

Biowaste based fuels should be considered as an important part of the CO₂ neutral interurban and rural mobility

 \rightarrow Open mind for all technologies targeting on CO₂ reduction – covering the complete life cycle

Thank You, and the entire Team behind this work!

Marc Sens

IAV GmbH

Telephone +49 30 3997 - 89739

Mobile +49 162 244 61 84

marc.sens@iav.de

www.iav.com

